Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
9b51ef5c
Commit
9b51ef5c
authored
5 years ago
by
Ubuntu
Browse files
Options
Downloads
Plain Diff
merging
parents
bb302f7c
de4a1143
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
llvm/projects/hpvm-tensor-rt/build_pldi/table_generator.py
+19
-4
19 additions, 4 deletions
llvm/projects/hpvm-tensor-rt/build_pldi/table_generator.py
llvm/projects/soc_simulator/src/driver.py
+284
-111
284 additions, 111 deletions
llvm/projects/soc_simulator/src/driver.py
with
303 additions
and
115 deletions
llvm/projects/hpvm-tensor-rt/build_pldi/table_generator.py
+
19
−
4
View file @
9b51ef5c
...
...
@@ -2,9 +2,21 @@ import glob
import
os
import
subprocess
import
shutil
import
sys
from
collections
import
defaultdict
'''
FORMAT
** LayerName NumOpsInLayer <cols>
OpName Col1Val Col2Val ...
** Conv1 1 h2f_time h2f_energy fp32_time fp32_energy f2h_time f2h_energy fp16_perf_time fp16_perf_energy fp16_time fp16_energy
Conv1 51.8808 97.2844 319.582 601.966 12.81 18.758 388.092 650.649 340.037 590.664
'''
class
TableGenerator
:
__ops_header_delimiter
=
"
#
"
...
...
@@ -53,7 +65,7 @@ class TableGenerator:
3. Writes the internal table to <network_name>_tensors.txt file and uses the
<network_name>_ops.txt file as a guideline in terms of row order
'''
self
.
__run_inputted_binaries
()
#
self.__run_inputted_binaries()
self
.
__build_internal_table
()
self
.
__output_table_to_file
()
...
...
@@ -282,8 +294,11 @@ class TableGenerator:
if
__name__
==
"
__main__
"
:
binary_dir_path
=
"
/home/nvidia/Gitlab/hpvm/llvm/projects/hpvm-tensor-rt/build_pldi/mobilenet
"
num_iters
=
1
profiler_binary_name
=
"
/home/nvidia/awesome_profiler/pp
"
if
len
(
sys
.
argv
)
!=
4
:
print
(
"
python table_generator.py <binary dir path> <num itrs> <profiler bin path>
"
)
exit
(
1
)
binary_dir_path
=
sys
.
argv
[
1
]
num_iters
=
int
(
sys
.
argv
[
2
])
profiler_binary_name
=
sys
.
argv
[
3
]
table_gen
=
TableGenerator
(
binary_dir_path
,
num_iters
,
profiler_binary_name
)
table_gen
.
generate_table
()
This diff is collapsed.
Click to expand it.
llvm/projects/soc_simulator/src/driver.py
+
284
−
111
View file @
9b51ef5c
# Python driver -- ported from Perl driver (driver.pl)
from
collections
import
defaultdict
import
os
import
subprocess
import
sys
def
build_nested_default_dict
()
:
return
defaultdict
(
build_nested_default_dict
)
class
Driver
:
fp16_swing
=
8
tensor_layers
=
defaultdict
(
build_nested_default_dict
)
class
ApproxTypes
:
FP16
=
0
FP32
=
1
PROMISE
=
2
def
is_conv
(
operation_name
):
re
turn
operation_name
.
startswith
(
"
Conv
"
)
results_time_key
=
"
Time
"
re
sults_energy_key
=
"
Energy
"
def
is_nml
(
operation_name
):
return
operation_name
.
startswith
(
"
NML
"
)
def
is_fc
(
operation_name
):
return
operation_name
.
startswith
(
"
FC
"
)
def
driver
(
self
):
self
.
__parse_tensor_layer_file
()
self
.
__parse_tensor_table
()
self
.
__run_simulations
()
self
.
__display_results
()
def
parse_tensor_layer_file
(
layer_filename
):
'''
Convs: Layer name, N, Cin, H, W, Cout, Kh, Kw, Sh, Sw
FCs: Layer name, Rows_A, Cols_A, Rows_B, Cols_B
NMLs (No Man Lands): NML<number> (edited)
'''
if
not
os
.
path
.
isfile
(
layer_filename
):
print
(
"
ERROR: %s was not found.
"
%
layer_filename
)
exit
(
1
)
layer_file
=
open
(
layer_filename
,
"
r
"
)
for
line
in
layer_file
:
layer_data
=
line
.
strip
().
split
(
'
,
'
)
layer_name
=
layer_data
[
0
]
if
is_conv
(
layer_name
):
tensor_layers
[
layer_name
][
"
N
"
]
=
layer_data
[
1
]
tensor_layers
[
layer_name
][
"
Cin
"
]
=
layer_data
[
2
]
tensor_layers
[
layer_name
][
"
H
"
]
=
layer_data
[
3
]
tensor_layers
[
layer_name
][
"
W
"
]
=
layer_data
[
4
]
tensor_layers
[
layer_name
][
"
Cout
"
]
=
layer_data
[
5
]
tensor_layers
[
layer_name
][
"
Kh
"
]
=
layer_data
[
6
]
tensor_layers
[
layer_name
][
"
Kw
"
]
=
layer_data
[
7
]
tensor_layers
[
layer_name
][
"
Sh
"
]
=
layer_data
[
8
]
tensor_layers
[
layer_name
][
"
Sw
"
]
=
layer_data
[
9
]
elif
is_fc
(
layer_name
):
tensor_layers
[
layer_name
][
"
RA
"
]
=
layer_data
[
1
]
tensor_layers
[
layer_name
][
"
CA
"
]
=
layer_data
[
2
]
tensor_layers
[
layer_name
][
"
RB
"
]
=
layer_data
[
3
]
tensor_layers
[
layer_name
][
"
CB
"
]
=
layer_data
[
4
]
elif
not
is_nml
(
layer_name
):
# TODO should we store data for NMLs?
print
(
"
ERROR: Invalid layer name %s
"
%
layer_name
)
exit
(
1
)
layer_file
.
close
()
# should this be a nested dict of dicts?
# [layer_name][operation_name][cols]
tensor_table
=
defaultdict
(
build_nested_default_dict
)
def
parse_tensor_table
(
table_filename
):
if
not
os
.
path
.
isfile
(
table_filename
):
print
(
"
ERROR: %s was not found.
"
%
table_filename
)
exit
(
1
)
def
__init__
(
self
,
layer_filename
,
table_filename
,
config_filename
,
results_filename
):
self
.
__layer_filename
=
layer_filename
self
.
__table_filename
=
table_filename
self
.
__config_filename
=
config_filename
self
.
__results_filename
=
results_filename
# NOTE: Use an OrderedDict if we want to search by operation name
# Using a list bc we care about the order the data is read in
# since it corresponds to the data in the configuration file
self
.
__tensor_layers
=
[]
# [layer_name][operation_name][cols]
# Operation names need to be stored in order of insertion
self
.
__tensor_table
=
defaultdict
(
lambda
:
list
(
defaultdict
(
str
)))
# [Time/Energy][number corresponding to order the layer config was read in] = time/energy
self
.
__aggregate_results
=
defaultdict
(
lambda
:
defaultdict
(
float
))
self
.
__config_count
=
0
@staticmethod
def
is_conv
(
operation_name
):
return
operation_name
.
startswith
(
"
Conv
"
)
@staticmethod
def
is_nml
(
operation_name
):
return
operation_name
.
startswith
(
"
NML
"
)
@staticmethod
def
is_fc
(
operation_name
):
return
operation_name
.
startswith
(
"
FC
"
)
def
__parse_tensor_layer_file
(
self
):
if
not
os
.
path
.
isfile
(
self
.
__layer_filename
):
print
(
"
ERROR: %s was not found.
"
%
self
.
__layer_filename
)
exit
(
1
)
layer_file
=
open
(
self
.
__layer_filename
,
"
r
"
)
for
line
in
layer_file
:
layer_data
=
line
.
strip
().
split
(
'
,
'
)
layer_name
=
layer_data
[
0
]
tensor_layer
=
defaultdict
(
str
)
tensor_layer
[
"
Name
"
]
=
layer_name
if
Driver
.
is_conv
(
layer_name
):
tensor_layer
[
"
N
"
]
=
float
(
layer_data
[
1
])
tensor_layer
[
"
Cin
"
]
=
float
(
layer_data
[
2
])
tensor_layer
[
"
H
"
]
=
float
(
layer_data
[
3
])
tensor_layer
[
"
W
"
]
=
float
(
layer_data
[
4
])
tensor_layer
[
"
Cout
"
]
=
float
(
layer_data
[
5
])
tensor_layer
[
"
Kh
"
]
=
float
(
layer_data
[
7
])
tensor_layer
[
"
Kw
"
]
=
float
(
layer_data
[
8
])
tensor_layer
[
"
Sh
"
]
=
float
(
layer_data
[
9
])
tensor_layer
[
"
Sw
"
]
=
float
(
layer_data
[
10
])
elif
Driver
.
is_fc
(
layer_name
):
tensor_layer
[
"
RA
"
]
=
float
(
layer_data
[
1
])
tensor_layer
[
"
CA
"
]
=
float
(
layer_data
[
2
])
tensor_layer
[
"
RB
"
]
=
float
(
layer_data
[
3
])
tensor_layer
[
"
CB
"
]
=
float
(
layer_data
[
4
])
elif
not
Driver
.
is_nml
(
layer_name
):
# TODO should we store data for NMLs?
print
(
"
ERROR: Invalid layer name %s
"
%
layer_name
)
exit
(
1
)
self
.
__tensor_layers
.
append
(
tensor_layer
)
layer_file
.
close
()
def
__parse_tensor_table
(
self
):
if
not
os
.
path
.
isfile
(
self
.
__table_filename
):
print
(
"
ERROR: %s was not found.
"
%
self
.
__table_filename
)
exit
(
1
)
table_file
=
open
(
self
.
__table_filename
,
"
r
"
)
line
=
table_file
.
readline
().
strip
()
while
line
:
# Line here MUST be a header or there's a bug
# Get the description of the layer
assert
(
line
.
startswith
(
"
**
"
))
header_contents
=
line
.
split
(
'
'
)[
1
:]
layer_name
=
header_contents
[
0
]
num_ops
=
int
(
header_contents
[
1
])
col_names
=
header_contents
[
2
:]
layer_operations
=
[]
# Go through all operations in the layer
for
op_count
in
range
(
num_ops
):
operation_data
=
defaultdict
(
str
)
line
=
table_file
.
readline
().
strip
()
op_data
=
line
.
split
(
'
'
)
op_name
=
op_data
[
0
]
operation_data
[
"
Name
"
]
=
op_name
# Number of data items (#s) needs to match up with the # of cols
assert
(
len
(
op_data
)
-
1
==
len
(
col_names
))
# Go through all data items (each col element) per operation
for
i
in
range
(
len
(
col_names
)):
operation_data
[
col_names
[
i
]]
=
float
(
op_data
[
i
+
1
])
layer_operations
.
append
(
operation_data
)
self
.
__tensor_table
[
layer_name
]
=
layer_operations
line
=
table_file
.
readline
().
strip
()
table_file
.
close
()
@staticmethod
def
is_promise
(
config_layer
):
return
float
(
config_layer
.
split
(
'
'
)[
0
])
<
Driver
.
fp16_swing
def
__quantize
(
self
,
curr_layer
,
prev_layer
,
h2f_f2h_operation_ind
,
layer_data
):
if
curr_layer
==
prev_layer
or
curr_layer
==
Driver
.
ApproxTypes
.
PROMISE
\
or
prev_layer
==
Driver
.
ApproxTypes
.
PROMISE
:
# No quantization needed
return
0.0
,
0.0
layer_name
=
layer_data
[
"
Name
"
]
# NOTE: Ignoring logic where curr == promise or prev == promise bc
# smartDMA is always true so we'd return near the beginning of the method
# Get h2f/f2h data using the first tensor operation in the layer
# (which is why order matters in the tensor table)
tensor_op_row
=
self
.
__tensor_table
[
layer_name
][
h2f_f2h_operation_ind
]
if
curr_layer
==
Driver
.
ApproxTypes
.
FP32
:
time
=
tensor_op_row
[
"
h2f_time
"
]
energy
=
tensor_op_row
[
"
h2f_energy
"
]
elif
curr_layer
==
Driver
.
ApproxTypes
.
FP16
:
time
=
tensor_op_row
[
"
f2h_time
"
]
energy
=
tensor_op_row
[
"
f2h_energy
"
]
print
(
"
Quantization: (%f, %f)
"
%
(
time
,
energy
))
return
(
time
,
energy
)
def
__run_promise_simulation
(
self
,
swing
,
layer_data
):
layer_name
=
layer_data
[
"
Name
"
]
patch_factor
=
1
if
Driver
.
is_conv
(
layer_name
):
rows_a
=
layer_data
[
"
N
"
]
*
layer_data
[
"
H
"
]
*
layer_data
[
"
W
"
]
\
/
(
layer_data
[
"
Sh
"
]
*
layer_data
[
"
Sw
"
])
cols_a
=
layer_data
[
"
Cin
"
]
*
layer_data
[
"
Kh
"
]
*
layer_data
[
"
Kw
"
]
rows_b
=
cols_a
cols_b
=
layer_data
[
"
Cout
"
]
patch_factor
=
layer_data
[
"
Kh
"
]
*
layer_data
[
"
Kw
"
]
elif
Driver
.
is_fc
(
layer_name
):
rows_a
=
layer_data
[
"
RA
"
]
cols_a
=
layer_data
[
"
CA
"
]
rows_b
=
cols_a
cols_b
=
layer_data
[
"
CB
"
]
else
:
print
(
"
PROMISE can
'
t run whatever this layer is.
"
)
exit
(
1
)
# Run promise simulator
# TODO need to print time and energy in the ptm runner so we can pipe it
output
=
subprocess
.
Popen
([
"
./ptm
"
,
str
(
rows_a
),
str
(
cols_a
),
str
(
rows_b
),
\
str
(
cols_b
),
str
(
patch_factor
),
str
(
swing
)],
\
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
).
communicate
()[
0
]
total_time_energy
=
output
.
strip
().
split
(
'
,
'
)
assert
(
len
(
total_time_energy
)
==
2
)
print
(
"
PROMISE: (%s, %s)
"
%
(
total_time_energy
[
0
],
total_time_energy
[
1
]))
return
float
(
total_time_energy
[
0
]),
float
(
total_time_energy
[
1
])
def
__run_gpu_simulation
(
self
,
curr_layer
,
layer_name
,
tensor_ind
):
tensor_info
=
self
.
__tensor_table
[
layer_name
][
tensor_ind
]
if
curr_layer
==
Driver
.
ApproxTypes
.
FP32
:
conversion_time
=
tensor_info
[
"
fp32_time
"
]
conversion_energy
=
tensor_info
[
"
fp32_energy
"
]
else
:
conversion_time
=
tensor_info
[
"
fp16_time
"
]
conversion_energy
=
tensor_info
[
"
fp16_energy
"
]
print
(
"
GPU: (%f, %f)
"
%
(
conversion_time
,
conversion_energy
))
return
(
conversion_time
,
conversion_energy
)
def
__run_simulations
(
self
):
print
(
"
run sim
"
)
if
not
os
.
path
.
isfile
(
self
.
__config_filename
):
print
(
"
ERROR: %s was not found
"
%
self
.
__config_filename
)
exit
(
1
)
config_file
=
open
(
self
.
__config_filename
,
"
r
"
)
# each line = indepedent configuration
# layers are separated by commas
# tensor ops are separated by spaces
for
config
in
config_file
:
config_layers
=
config
.
strip
().
split
(
'
,
'
)
prev_layer
=
Driver
.
ApproxTypes
.
FP32
curr_layer
=
None
for
layer_ind
,
config_layer
in
enumerate
(
config_layers
):
# level
layer_data
=
self
.
__tensor_layers
[
layer_ind
]
# layer
layer_name
=
layer_data
[
"
Name
"
]
if
Driver
.
is_promise
(
config_layer
):
print
(
"
Running layer %s on PROMISE
"
%
layer_name
)
curr_layer
=
Driver
.
ApproxTypes
.
PROMISE
quant_time
,
quant_energy
=
self
.
__quantize
(
curr_layer
,
prev_layer
,
0
,
layer_data
)
# Compute
time
,
energy
=
self
.
__run_promise_simulation
(
config_layer
,
layer_data
)
print
(
time
,
energy
)
self
.
__aggregate_results
[
Driver
.
results_time_key
][
self
.
__config_count
]
+=
time
self
.
__aggregate_results
[
Driver
.
results_energy_key
][
self
.
__config_count
]
+=
energy
else
:
print
(
"
Running layer %s on the GPU
"
%
layer_name
)
tensor_ops
=
config_layer
.
split
(
'
'
)
total_time
=
0
total_energy
=
0
for
tensor_ind
,
tensor_op
in
enumerate
(
tensor_ops
):
# sublevle
tensor_op
=
int
(
tensor_op
)
if
tensor_op
==
Driver
.
fp16_swing
:
curr_layer
=
Driver
.
ApproxTypes
.
FP16
else
:
curr_layer
=
Driver
.
ApproxTypes
.
FP32
quant_time
,
quant_energy
=
self
.
__quantize
(
curr_layer
,
prev_layer
,
tensor_ind
,
layer_data
)
conv_time
,
conv_energy
=
self
.
__run_gpu_simulation
(
curr_layer
,
layer_name
,
tensor_ind
)
total_time
+=
quant_time
+
conv_time
total_energy
+=
quant_energy
+
conv_energy
self
.
__aggregate_results
[
Driver
.
results_time_key
][
self
.
__config_count
]
+=
total_time
self
.
__aggregate_results
[
Driver
.
results_energy_key
][
self
.
__config_count
]
+=
total_energy
prev_layer
=
curr_layer
self
.
__config_count
+=
1
print
(
"
\n
"
)
config_file
.
close
()
def
__display_results
(
self
):
results_file
=
open
(
self
.
__results_filename
,
"
w
"
)
attributes_to_print
=
[
Driver
.
results_time_key
,
Driver
.
results_energy_key
]
for
attribute
in
attributes_to_print
:
results_file
.
write
(
"
%s
\n
"
%
attribute
)
results_file
.
write
(
"
Configuration,Total,Improvement
\n
"
)
baseline_val
=
self
.
__aggregate_results
[
attribute
][
0
]
print
(
baseline_val
)
best_config
=
None
best_result
=
None
for
config_ind
in
range
(
self
.
__config_count
):
results_file
.
write
(
"
c%d
"
%
config_ind
)
time_or_energy_val
=
self
.
__aggregate_results
[
attribute
][
config_ind
]
# Using repr to keep all decimal digits when writing to file
results_file
.
write
(
"
,%s
"
%
repr
(
time_or_energy_val
))
results_file
.
write
(
"
,%s
\n
"
%
repr
(
baseline_val
/
(
time_or_energy_val
+
0.0001
)))
if
not
best_result
or
time_or_energy_val
<
best_result
:
best_result
=
time_or_energy_val
best_config
=
config_ind
results_file
.
write
(
"
\n
c%d,%s
\n\n
"
%
(
best_config
,
repr
(
self
.
__aggregate_results
[
attribute
][
best_config
])))
results_file
.
close
()
table_file
=
open
(
table_filename
,
"
r
"
)
line
=
table_file
.
readline
().
strip
()
while
line
:
# Line here MUST be a header or there's a bug
# Get the description of the layer
assert
(
line
.
startswith
(
"
**
"
))
header_contents
=
line
.
split
(
'
'
)[
1
:]
layer_name
=
header_contents
[
0
]
num_ops
=
int
(
header_contents
[
1
])
col_names
=
header_contents
[
2
:]
# Go through all operations in the layer
for
op_count
in
range
(
num_ops
):
line
=
table_file
.
readline
().
strip
()
op_data
=
line
.
split
(
'
'
)
op_name
=
op_data
[
0
]
# Number of data items (#s) needs to match up with the # of cols
assert
(
len
(
op_data
)
-
1
==
len
(
col_names
))
# Go through all data items (each col element) per operation
for
i
in
range
(
len
(
col_names
)):
tensor_table
[
layer_name
][
op_name
][
col_names
[
i
]]
=
op_data
[
i
+
1
]
line
=
table_file
.
readline
().
strip
()
table_file
.
close
()
def
run_simulations
():
# open configuration file
# open results file
# read through each line in the configuration file
# for each config file line --> parse the comma separated voltage swing levels
# recall: each line = a configuration that works
# for each level
# if promise --> promise runs an entire layer
# quantize, no patching and unpatching
# run on promise
# output the total time and energy
# else
# for each sublevel (separated by spaces)
# quantize
# run
# keep track of total time and energy --> update as needed
# output the total time and energy
# quantization: we always have smart dma
# need to search stuff up
# $layer = a map of elements
# stores the layer name, then
if
__name__
==
"
__main__
"
:
if
len
(
sys
.
argv
)
!=
4
)
:
if
len
(
sys
.
argv
)
!=
5
:
print
(
"
Usage: python driver.py <layer info> <tensor info> <configurations> <results file>
"
)
exit
(
1
)
Driver
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
],
sys
.
argv
[
4
]).
driver
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment