Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
94e4c363
Commit
94e4c363
authored
6 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Including utility definitions - tensorUtils
parent
ff96c5cd
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/test/VISC/DNN_Benchmarks/common/include/tensorUtils.h
+344
-15
344 additions, 15 deletions
llvm/test/VISC/DNN_Benchmarks/common/include/tensorUtils.h
with
344 additions
and
15 deletions
llvm/test/VISC/DNN_Benchmarks/common/include/tensorUtils.h
+
344
−
15
View file @
94e4c363
#include
<tensorTypes.h>
// Header guards
#ifndef UTILS_HEADER
#define UTILS_HEADER
void
printTensorInfo
(
void
*
tensor_ptr
);
void
dumpWeightsToFile
(
char
*
file_name
,
void
*
weights_ptr
);
void
fillTensorWithOnes
(
void
*
tensor_ptr
);
void
fillWithOnesAndTwos
(
void
*
tensor_ptr
);
void
fillTensorWithNegOnes
(
void
*
tensor_ptr
);
void
fillTensorVals
(
void
*
tensor_ptr
);
void
printTensorValues
(
void
*
tensor_ptr
);
void
printTensorDims
(
void
*
tensor_ptr
);
void
compareTensors
(
void
*
tensor1_ptr
,
void
*
tensor2_ptr
);
void
compareValues
(
void
*
tensor_ptr
,
float
*
data
,
size_t
num_elems
);
#include
<sstream>
//#include <tensorTypes.h>
#include
<tensor_runtime.h>
#include
<tensor.h>
//#include "../../../../../projects/hpvm-tensor-rt/tensor_runtime/include/tensor.h"
//#include "../../../projects/hpvm-tensor-rt/tensor_runtime/include/tensor.h"
//#include "types.h"
void
printTensorInfo
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
if
(
tensor
->
gpu_data
!=
NULL
){
printf
(
"Successful cudaMalloc
\n
"
);
}
printf
(
"tensor dims = %d
\n
"
,
tensor
->
dims
.
num_dims
);
printf
(
"dim1_size = %d
\n
"
,
tensor
->
dims
.
dim_sizes
[
0
]);
printf
(
"dim2_size = %d
\n
"
,
tensor
->
dims
.
dim_sizes
[
1
]);
printf
(
"num_elems = %d
\n
"
,
tensor
->
num_elems
);
}
// FIXIT: Move this to debug.h and include in all files
void
dumpWeightsToFile
(
char
*
file_name
,
void
*
weights_ptr
){
struct
Tensor
*
weights
=
(
Tensor
*
)
weights_ptr
;
// Move data back to host
hpvm_request_tensor
(
weights
,
0
);
FILE
*
fp
=
fopen
(
file_name
,
"wb"
);
if
(
fp
==
NULL
){
printf
(
"File %s could not be created. Check if directory exists
\n
"
,
file_name
);
abort
();
}
printf
(
"size_in_bytes = %d
\n
"
,
weights
->
size_in_bytes
);
size_t
bytes_written
=
fwrite
(
weights
->
host_data
,
1
,
weights
->
size_in_bytes
,
fp
);
printf
(
"bytes_written = %d
\n
"
,
bytes_written
);
fclose
(
fp
);
}
void
fillTensorWithOnes
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
hpvm_request_tensor
(
tensor
,
0
);
// initialization is specific to the floating point type
if
(
tensor
->
data_type
==
CUDNN_DATA_FLOAT
){
float
*
data_arr
=
(
float
*
)
tensor
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
tensor
->
num_elems
;
i
++
){
data_arr
[
i
]
=
1
.
0
;
}
}
}
void
fillWithOnesAndTwos
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
hpvm_request_tensor
(
tensor
,
0
);
// initialization is specific to the floating point type
if
(
tensor
->
data_type
==
CUDNN_DATA_FLOAT
){
float
*
data_arr
=
(
float
*
)
tensor
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
tensor
->
num_elems
/
2
;
i
++
){
data_arr
[
i
]
=
1
.
0
;
}
for
(
unsigned
int
i
=
tensor
->
num_elems
/
2
;
i
<
tensor
->
num_elems
;
i
++
){
data_arr
[
i
]
=
2
.
0
;
}
}
}
void
fillTensorWithNegOnes
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
hpvm_request_tensor
(
tensor
,
0
);
// initialization is specific to the floating point type
if
(
tensor
->
data_type
==
CUDNN_DATA_FLOAT
){
float
*
data_arr
=
(
float
*
)
tensor
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
tensor
->
num_elems
;
i
++
){
data_arr
[
i
]
=
-
1
.
0
;
}
}
}
void
fillTensorVals
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
// initialization is specific to the floating point type
if
(
tensor
->
data_type
==
CUDNN_DATA_FLOAT
){
float
*
data_arr
=
(
float
*
)
tensor
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
tensor
->
num_elems
;
i
++
){
data_arr
[
i
]
=
i
+
1
;
}
}
}
void
printTensorValues
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
hpvm_request_tensor
(
tensor
,
0
);
// printing is specific to the floating point type
if
(
tensor
->
data_type
==
CUDNN_DATA_FLOAT
){
float
*
data_arr
=
(
float
*
)
tensor
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
tensor
->
num_elems
;
i
++
){
printf
(
"%f,"
,
data_arr
[
i
]);
}
}
printf
(
"
\n
"
);
}
void
printTensorDims
(
void
*
tensor_ptr
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
printf
(
"Num_elems = %d
\n
"
,
tensor
->
num_elems
);
for
(
int
i
=
0
;
i
<
tensor
->
dims
.
num_dims
;
i
++
){
printf
(
"dim[%d] = %d
\n
"
,
i
,
tensor
->
dims
.
dim_sizes
[
i
]);
}
}
void
compareTensors
(
void
*
tensor1_ptr
,
void
*
tensor2_ptr
){
struct
Tensor
*
tensor1
=
(
struct
Tensor
*
)
tensor1_ptr
;
struct
Tensor
*
tensor2
=
(
struct
Tensor
*
)
tensor2_ptr
;
hpvm_request_tensor
(
tensor1
,
0
);
hpvm_request_tensor
(
tensor2
,
0
);
float
*
tensor_data1
=
(
float
*
)
tensor1
->
host_data
;
float
*
tensor_data2
=
(
float
*
)
tensor2
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
tensor1
->
num_elems
;
i
++
){
if
(
tensor_data1
[
i
]
!=
tensor_data2
[
i
]){
printf
(
"Tensor data mismatch at index %d
\n
"
,
i
);
abort
();
}
}
}
void
compareValues
(
void
*
tensor_ptr
,
float
*
data
,
size_t
num_elems
){
struct
Tensor
*
tensor
=
(
struct
Tensor
*
)
tensor_ptr
;
hpvm_request_tensor
(
tensor
,
0
);
float
*
tensor_data
=
(
float
*
)
tensor
->
host_data
;
for
(
unsigned
int
i
=
0
;
i
<
num_elems
;
i
++
){
if
(
tensor_data
[
i
]
!=
data
[
i
]){
printf
(
"Tensor data mismatch"
);
abort
();
}
}
}
void
*
readInputTensor
(
char
*
file_name
,
int
data_type
,
int
dim1_size
,
int
dim2_size
,
int
dim3_size
,
int
dim4_size
);
int
dim3_size
,
int
dim4_size
){
int
type_size
=
4
;
// NOTE: Assuming floating point tensors
int
num_elems
=
dim1_size
*
dim2_size
*
dim3_size
*
dim4_size
;
int
size_in_bytes
=
type_size
*
dim1_size
*
dim2_size
*
dim3_size
*
dim4_size
;
uint8_t
*
file_data
=
(
uint8_t
*
)
malloc
(
sizeof
(
char
)
*
num_elems
);
float
*
tensor_data
=
(
float
*
)
malloc
(
sizeof
(
float
)
*
num_elems
);
int
file_header_size
=
16
;
FILE
*
file
=
fopen
(
file_name
,
"rb"
);
if
(
file
==
NULL
){
printf
(
"Data file %s is not found. Aborting...
\n
"
,
file_name
);
abort
();
}
fseek
(
file
,
file_header_size
,
SEEK_CUR
);
// Skipping the file header
size_t
bytes_read
=
fread
(
file_data
,
1
,
sizeof
(
uint8_t
)
*
num_elems
,
file
);
for
(
size_t
i
=
0
;
i
<
num_elems
;
++
i
){
tensor_data
[
i
]
=
(
float
)
file_data
[
i
]
/
255
.
0
f
;
}
printf
(
"tensor_data[%d] = %f
\n
"
,
10
,
tensor_data
[
10
]);
// NOTE: Using NCHW format
struct
Tensor
*
input
=
(
struct
Tensor
*
)
create4DTensor
(
data_type
,
nchw
,
dim1_size
,
dim2_size
,
dim3_size
,
dim4_size
);
initTensorData
(
input
,
tensor_data
,
size_in_bytes
);
compareValues
(
input
,
tensor_data
,
num_elems
);
return
input
;
}
struct
Tensor
*
readTrainedWeights
(
char
*
file_name
,
int
data_type
,
int
dim1_size
,
int
dim2_size
,
int
dim3_size
,
int
dim4_size
);
uint8_t
*
readLabels
(
char
*
labels_file
,
int
num_labels
);
void
computeAccuracy
(
char
*
labels_file
,
int
num_labels
,
void
*
result_ptr
);
int
dim3_size
,
int
dim4_size
){
// FIXIT: Don't assume floating point types
int
type_size
=
4
;
// NOTE: Assuming floating point tensors
int
num_elems
=
dim1_size
*
dim2_size
*
dim3_size
*
dim4_size
;
int
size_in_bytes
=
type_size
*
dim1_size
*
dim2_size
*
dim3_size
*
dim4_size
;
float
*
tensor_data
=
(
float
*
)
malloc
(
sizeof
(
float
)
*
num_elems
);
int
file_header_size
=
0
;
FILE
*
file
=
fopen
(
file_name
,
"rb"
);
if
(
file
==
NULL
){
printf
(
"Data file %s is not found. Aborting...
\n
"
,
file_name
);
abort
();
}
fseek
(
file
,
file_header_size
,
SEEK_CUR
);
// Skipping the file header
size_t
bytes_read
=
fread
(
tensor_data
,
1
,
size_in_bytes
,
file
);
//printf("tensor_data[%d] = %f \n", num_elems-1, tensor_data[num_elems-1]);
struct
Tensor
*
weights
=
(
struct
Tensor
*
)
create4DTensor
(
data_type
,
nchw
,
dim1_size
,
dim2_size
,
dim3_size
,
dim4_size
);
initTensorData
(
weights
,
tensor_data
,
size_in_bytes
);
compareValues
(
weights
,
tensor_data
,
num_elems
);
return
weights
;
}
uint8_t
*
readLabels
(
char
*
labels_file
,
int
num_labels
){
int
file_header_size
=
8
;
uint8_t
*
labels
=
(
uint8_t
*
)
malloc
(
sizeof
(
uint8_t
)
*
num_labels
);
FILE
*
file
=
fopen
(
labels_file
,
"rb"
);
if
(
file
==
NULL
){
printf
(
"Data file %s is not found. Aborting...
\n
"
,
labels_file
);
abort
();
}
fseek
(
file
,
file_header_size
,
SEEK_CUR
);
// Skipping the file header
size_t
bytes_read
=
fread
(
labels
,
1
,
sizeof
(
uint8_t
)
*
num_labels
,
file
);
printf
(
"--labels bytes_read = %d
\n
"
,
bytes_read
);
return
labels
;
}
void
computeAccuracy
(
char
*
labels_file
,
int
num_labels
,
void
*
result_ptr
){
struct
Tensor
*
result
=
(
struct
Tensor
*
)
result_ptr
;
uint8_t
*
labels
=
readLabels
(
labels_file
,
num_labels
);
size_t
batch_dim
=
result
->
dims
.
dim_sizes
[
0
];
size_t
channels
=
result
->
dims
.
dim_sizes
[
1
];
float
*
data
=
(
float
*
)
result
->
host_data
;
int
num_errors
=
0
;
for
(
int
i
=
0
;
i
<
batch_dim
;
i
++
){
int
chosen
=
0
;
for
(
int
id
=
1
;
id
<
10
;
++
id
){
if
(
data
[
i
*
channels
+
chosen
]
<
data
[
i
*
channels
+
id
])
chosen
=
id
;
}
//printf("chosen = %d, label = %d \n", chosen, labels[i]);
if
(
chosen
!=
labels
[
i
])
num_errors
++
;
}
float
accuracy
=
((
batch_dim
-
num_errors
)
*
1
.
0
/
batch_dim
*
1
.
0
)
*
100
.
0
;
printf
(
"****** Accuracy = %f
\n\n
"
,
accuracy
);
FILE
*
fp
=
fopen
(
"final_accuracy"
,
"w+"
);
if
(
fp
!=
NULL
){
std
::
ostringstream
ss
;
ss
<<
std
::
fixed
<<
accuracy
;
std
::
string
print_str
=
ss
.
str
();
fwrite
(
print_str
.
c_str
(),
1
,
print_str
.
length
(),
fp
);
fclose
(
fp
);
}
}
void
computeAccuracy2
(
uint8_t
*
labels
,
int
num_labels
,
void
*
result_ptr
){
struct
Tensor
*
result
=
(
struct
Tensor
*
)
result_ptr
;
//uint8_t* labels = readLabels(labels_file, num_labels);
size_t
batch_dim
=
result
->
dims
.
dim_sizes
[
0
];
size_t
channels
=
result
->
dims
.
dim_sizes
[
1
];
float
*
data
=
(
float
*
)
result
->
host_data
;
int
num_errors
=
0
;
for
(
int
i
=
0
;
i
<
batch_dim
;
i
++
){
int
chosen
=
0
;
for
(
int
id
=
1
;
id
<
10
;
++
id
){
if
(
data
[
i
*
channels
+
chosen
]
<
data
[
i
*
channels
+
id
])
chosen
=
id
;
}
//printf("chosen = %d, label = %d \n", chosen, labels[i]);
if
(
chosen
!=
labels
[
i
])
num_errors
++
;
}
float
accuracy
=
((
batch_dim
-
num_errors
)
*
1
.
0
/
batch_dim
*
1
.
0
)
*
100
.
0
;
printf
(
"****** Accuracy = %f
\n\n
"
,
accuracy
);
FILE
*
fp
=
fopen
(
"final_accuracy"
,
"w+"
);
if
(
fp
!=
NULL
){
std
::
ostringstream
ss
;
ss
<<
std
::
fixed
<<
accuracy
;
std
::
string
print_str
=
ss
.
str
();
fwrite
(
print_str
.
c_str
(),
1
,
print_str
.
length
(),
fp
);
fclose
(
fp
);
}
}
#endif
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment