Skip to content
Snippets Groups Projects
Commit 80176cd7 authored by Elizabeth's avatar Elizabeth
Browse files

Implemented table outputter function

parent 2b606f03
No related branches found
No related tags found
No related merge requests found
......@@ -79,13 +79,16 @@ class TableGenerator:
return op_name[ : underscore_ind], op_name[underscore_ind + 1 : ]
def generate_table(self):
table = self.__build_nested_default_dict()
self.__table = self.__build_nested_default_dict()
self.__build_internal_table()
self.__output_table()
def __build_internal_table(self):
for results_file_name in os.listdir(self.__results_dir_name):
print(results_file_name, self.__network_name)
# Ignore if it's the output file or if it's not a results file
if results_file_name == table_filename or \
not results_file_name.startswith(self.__network_name):
# Ignore if it's not a results file
if results_file_name.startswith(self.__network_name):
continue
approx_type = self.__get_approximation_type(results_file_name)
......@@ -103,39 +106,81 @@ class TableGenerator:
orig_op_name, conversion_type = self.__get_original_operation_name(op_name)
print("f2h/h2f", orig_op_name, conversion_type)
# Error bc original op name should ALWAYS be in the table
if orig_op_name not in table:
if orig_op_name not in self.__table:
print("ERROR: Conversion found but original %s is not in the table" % orig_op_name)
exit(1)
table[orig_op_name][conversion_type]["time"] = total_time
table[orig_op_name][conversion_type]["energy"] = total_energy
self.__table[orig_op_name][conversion_type]["time"] = total_time
self.__table[orig_op_name][conversion_type]["energy"] = total_energy
# Create a new row in the dictionary
else:
table[op_name][approx_type]["time"] = total_time
table[op_name][approx_type]["energy"] = total_energy
self.__table[op_name][approx_type]["time"] = total_time
self.__table[op_name][approx_type]["energy"] = total_energy
results_file.close()
# Then output everything
def __output_table(self):
# Copy ops file to results directory to use as empty table
table_filename = "%s_tensors.txt" % self.__network_name
table_file_path = os.path.join(self.__results_dir_name, table_filename)
# TODO un hard code this
soc_operations_file_name = os.path.join("/home/nvidia/soc_simulator", \
"%s_cifar10" % self.__network_name, "%s_ops.txt" % self.__network_name)
#shutil.copyfile(soc_operations_file_name, table_file_path)
# Output in the order of everything in the file
# Conv1,1 = leave the same
# Next line: Conv1 --> find it
# don't need to copy the file over --> can use the original file as a reference
soc_operations_file = open(soc_operations_file_name, "r")
table_file = open(table_filename, "w")
for line in soc_operations_file:
if line.startswith("#"): # TODO variable
table_file.write(line) # Copy to table file
# Then write the new header for
soc_operations_file_name = os.path.join("/home/nvidia/soc_simulator", "%s_cifar10" % self.__network_name, "%s_ops.txt" % self.__network_name)
# Don't need to copy the file over --> can use the original file as a reference
soc_operations_file = open(soc_operations_file_name, "r")
table_file = open(table_filename, "w")
# Read header line to get layer name and # operations in layer
# Get ops in each layer using the dict
# TODO possible for operations in the same layer to not have the same # of cols?
# Need to store a list of all 2nd level dict keys we go through!
# at the very end --> then generate the header and write everything in
curr_line = soc_operations_file.readline().strip()
while curr_line:
# First line is always the layers line (#layer_name,num_ops)
layer_name, num_ops = self.__parse_layer_info_line(curr_line)
# Get each operation in the layer
ops_in_layer = []
header = []
for op_in_layer_count in range(num_ops):
# Each line consists of operation name
curr_line = soc_operations_file.readline().strip()
curr_op = [curr_line] # Join into a string later
operation_data = self.__table[curr_line]
# Iterate through time/energy data for each approx type
for approx_type in operation_data:
curr_op.append(operation_data[approx_type]["time"])
curr_op.append(operation_data[approx_type]["time"])
# CRITICAL ASSUMPTION: All ops within a layer have the same # cols
# Only fill out the header once for the layer
if op_in_layer_count == 0:
header.append(approx_type)
ops_in_layer.append(' '.join(curr_op))
# Getting all operation rows and then writing everything because
# calls to write() are slow (memory vs time tradeoff)
print("%s" % ' '.join(header))
print("%s" % '\n'.join(ops_in_layer))
table_file.write("%s\n" % ' '.join(header))
table_file.write("%s\n" % '\n'.join(ops_in_layer))
curr_line = soc_operations_file.readline().strip()
def __parse_layer_info_line(self, layer_info_line): #layer_name,num_ops
comma_ind = layer_info_line.find(",")
return layer_info_line[layer_info_line.find("#") : comma_ind], int(layer_info_line[comma_ind + 1 : ])
def __generate_header(self, table):
# <approx type time/energy> <conversion type at very end>
# should the header be per tensor op or per layer?
# Try doing this per layer first
pass
binary_dir_name = "/home/nvidia/Gitlab/hpvm/llvm/projects/hpvm-tensor-rt/build_pldi/mobilenet"
num_iters = 1
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment