Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
7183547b
Commit
7183547b
authored
6 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Porting Alexnet in the ApproxIR representation - model matching
parent
c6ef1bc6
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet/Makefile
+57
-0
57 additions, 0 deletions
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet/Makefile
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet/src/alexnet.cpp
+538
-0
538 additions, 0 deletions
...st/VISC/DNN_Benchmarks/benchmarks/alexnet/src/alexnet.cpp
with
595 additions
and
0 deletions
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet/Makefile
0 → 100644
+
57
−
0
View file @
7183547b
DNN_BENCHMARK_ROOT
=
$(
LLVM_SRC_ROOT
)
/test/VISC/DNN_Benchmarks
# NOTE: can configure build directory
HPVM_BUILD_DIR
=
$(
LLVM_SRC_ROOT
)
/../build_new/
CC
=
$(
HPVM_BUILD_DIR
)
/bin/clang++
OPT
=
$(
HPVM_BUILD_DIR
)
/bin/opt
LLVM_DIS
=
$(
HPVM_BUILD_DIR
)
/bin/llvm-dis
LLVM_LINK
=
$(
HPVM_BUILD_DIR
)
/bin/llvm-link
LLVM_INCLUDE_DIR
=
$(
LLVM_SRC_ROOT
)
/include
SRC_DIR
=
src
BUILD_DIR
=
build
APP
=
alexnet
TENSOR_INCLUDE_DIR
=
$(
DNN_BENCHMARK_ROOT
)
/common/include
TENSOR_RT_INCLUDE_DIR
=
$(
LLVM_SRC_ROOT
)
/projects/hpvm-tensor-rt/tensor_runtime/include
TENSOR_LIB_DIR
=
$(
LLVM_SRC_ROOT
)
/projects/hpvm-tensor-rt/lib/libtensor_runtime.a
TENSOR_AUTOTUNER_DIR
=
$(
LLVM_SRC_ROOT
)
/projects/hpvm-tensor-rt/lib/libtensor_autotuner.a
CC_FLAGS
=
-I
$(
LLVM_INCLUDE_DIR
)
-I
$(
TENSOR_INCLUDE_DIR
)
-I
$(
TENSOR_RT_INCLUDE_DIR
)
-I
$(
CUDA_INCLUDE_PATH
)
-fno-exceptions
-ffast-math
-std
=
c++11
-O3
CCFLAGS
+=
-DDEVICE
=
CUDNN_TARGET
LINKER_FLAGS
=
-lpthread
-lcudart
-lcurand
-lcudnn
-lcublas
-lOpenCL
HPVM_LIB_DIR
=
$(
HPVM_BUILD_DIR
)
/lib
HPVM_LIB_DIR
=
/home/hsharif3/Gitlab/hpvm/build_new/lib
VISC_OPTFLAGS
=
-load
$(
HPVM_LIB_DIR
)
/LLVMBuildDFG.so
-load
$(
HPVM_LIB_DIR
)
/LLVMInPlaceDFGAnalysis.so
-load
$(
HPVM_LIB_DIR
)
/LLVMDFG2LLVM_CUDNN.so
-load
$(
HPVM_LIB_DIR
)
/LLVMDFG2LLVM_X86.so
-load
$(
HPVM_LIB_DIR
)
/LLVMClearDFG.so
-inplace
-dfg2llvm-cudnn
-dfg2llvm-x86
-clearDFG
TARGET
=
$(
BUILD_DIR
)
/
$(
APP
)
.opt.bc
SOURCES
=
$(
SRC_DIR
)
/
$(
APP
)
.cpp
VISC_RT_PATH
=
$(
LLVM_SRC_ROOT
)
/../build/projects/visc-rt/visc-rt.ll
#OBJS = $(BUILD_DIR)/$(wildcabrd *.ll)
.PRECIOUS
:
$(BUILD_DIR)/$(APP).ll $(BUILD_DIR)/$(APP).visc.ll
default
:
$(BUILD_DIR) $(TARGET)
$(BUILD_DIR)/%.ll
:
$(SRC_DIR)/%.cpp
$(
CC
)
$(
CC_FLAGS
)
-emit-llvm
-S
-o
$@
$<
#-visc-timers-gen
$(BUILD_DIR)/%.visc.ll
:
$(BUILD_DIR)/%.ll
$(
OPT
)
-load
LLVMGenVISC.so
-genvisc
-globaldce
$<
-S
-o
$@
$(BUILD_DIR)/%.opt.bc
:
$(BUILD_DIR)/%.visc.ll
$(
OPT
)
$(
VISC_OPTFLAGS
)
$<
-o
$@
$(
LLVM_LINK
)
$@
$(
VISC_RT_PATH
)
-o
$(
BUILD_DIR
)
/
$(
APP
)
_linked.bc
$(
CC
)
$(
BUILD_DIR
)
/
$(
APP
)
_linked.bc
$(
TENSOR_LIB_DIR
)
-o
$(
BUILD_DIR
)
/
$(
APP
)
_linked
$(
LINKER_FLAGS
)
$(
CC
)
$(
BUILD_DIR
)
/
$(
APP
)
_linked.bc
$(
TENSOR_AUTOTUNER_DIR
)
-o
$(
BUILD_DIR
)
/
$(
APP
)
_tune
$(
LINKER_FLAGS
)
$(BUILD_DIR)
:
mkdir
-p
$@
clean
:
rm
-rf
$(
BUILD_DIR
)
This diff is collapsed.
Click to expand it.
llvm/test/VISC/DNN_Benchmarks/benchmarks/alexnet/src/alexnet.cpp
0 → 100644
+
538
−
0
View file @
7183547b
#include
<iostream>
#include
<cstdio>
#include
<cstring>
#include
<cinttypes>
#include
<visc.h>
#include
<tensorTypes.h>
#include
<tensorUtils.h>
using
namespace
std
;
/* DNN Layer 1 **/
void
tensorConvNode1
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
5
,
5
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode1
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorPoolNode1
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode1
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 1 **/
/* DNN Layer 2 **/
void
tensorConvNode2
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
2
,
2
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode2
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorPoolNode2
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode2
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 2 **/
/* DNN Layer 3 **/
void
tensorConvNode3
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
// FIXIT: Think if we can reuse the add, tanh, and pool nodes?
void
tensorAddNode3
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode3
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 3 **/
/* DNN Layer 4 **/
void
tensorConvNode4
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
// FIXIT: Think if we can reuse the add, tanh, and pool nodes?
void
tensorAddNode4
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode4
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 4 **/
/*** DNN Layer 5 ****/
void
tensorConvNode5
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode5
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorPoolNode5
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode5
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 5 **/
/***** DNN Layer 6 - FC layer ****/
void
tensorMulNode6
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_mul
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode6
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 6 **/
void
root
(
void
*
x
,
size_t
x_bytes
,
void
*
conv1_w
,
size_t
conv1_w_bytes
,
void
*
conv1_b
,
size_t
conv1_b_bytes
,
void
*
conv2_w
,
size_t
conv2_w_bytes
,
void
*
conv2_b
,
size_t
conv2_b_bytes
,
void
*
conv3_w
,
size_t
conv3_w_bytes
,
void
*
conv3_b
,
size_t
conv3_b_bytes
,
void
*
conv4_w
,
size_t
conv4_w_bytes
,
void
*
conv4_b
,
size_t
conv4_b_bytes
,
void
*
conv5_w
,
size_t
conv5_w_bytes
,
void
*
conv5_b
,
size_t
conv5_b_bytes
,
void
*
fc1_w
,
size_t
fc1_w_bytes
,
void
*
fc1_b
,
size_t
fc1_b_bytes
){
__visc__hint
(
visc
::
CPU_TARGET
);
__visc__attributes
(
13
,
x
,
conv1_w
,
conv1_b
,
conv2_w
,
conv2_b
,
conv3_w
,
conv3_b
,
conv4_w
,
conv4_b
,
conv5_w
,
conv5_b
,
fc1_w
,
fc1_b
,
0
);
// Conv1 Nodes
void
*
nodeConv1
=
__visc__createNodeND
(
0
,
tensorConvNode1
);
void
*
nodeAdd1
=
__visc__createNodeND
(
0
,
tensorAddNode1
);
void
*
nodeTanh1
=
__visc__createNodeND
(
0
,
tensorTanhNode1
);
void
*
nodePool1
=
__visc__createNodeND
(
0
,
tensorPoolNode1
);
// Conv2 Nodes
void
*
nodeConv2
=
__visc__createNodeND
(
0
,
tensorConvNode2
);
void
*
nodeAdd2
=
__visc__createNodeND
(
0
,
tensorAddNode2
);
void
*
nodeTanh2
=
__visc__createNodeND
(
0
,
tensorTanhNode2
);
void
*
nodePool2
=
__visc__createNodeND
(
0
,
tensorPoolNode2
);
// Conv3 Nodes
void
*
nodeConv3
=
__visc__createNodeND
(
0
,
tensorConvNode3
);
void
*
nodeAdd3
=
__visc__createNodeND
(
0
,
tensorAddNode3
);
void
*
nodeTanh3
=
__visc__createNodeND
(
0
,
tensorTanhNode3
);
// Conv4 Nodes
void
*
nodeConv4
=
__visc__createNodeND
(
0
,
tensorConvNode4
);
void
*
nodeAdd4
=
__visc__createNodeND
(
0
,
tensorAddNode4
);
void
*
nodeTanh4
=
__visc__createNodeND
(
0
,
tensorTanhNode4
);
// Conv5 Nodes
void
*
nodeConv5
=
__visc__createNodeND
(
0
,
tensorConvNode5
);
void
*
nodeAdd5
=
__visc__createNodeND
(
0
,
tensorAddNode5
);
void
*
nodeTanh5
=
__visc__createNodeND
(
0
,
tensorTanhNode5
);
void
*
nodePool5
=
__visc__createNodeND
(
0
,
tensorPoolNode5
);
// FC1 Nodes
void
*
nodeMul6
=
__visc__createNodeND
(
0
,
tensorMulNode6
);
void
*
nodeAdd6
=
__visc__createNodeND
(
0
,
tensorAddNode6
);
//***** Conv Layer 1 *******/
// node, src, dst, stream
__visc__bindIn
(
nodeConv1
,
0
,
0
,
0
);
__visc__bindIn
(
nodeConv1
,
1
,
1
,
0
);
__visc__bindIn
(
nodeConv1
,
2
,
2
,
0
);
__visc__bindIn
(
nodeConv1
,
3
,
3
,
0
);
// node, node, type, src, dst, stream
__visc__edge
(
nodeConv1
,
nodeAdd1
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeConv1
,
nodeAdd1
,
1
,
1
,
1
,
0
);
// parent_index, dest_index, bind_type
__visc__bindIn
(
nodeAdd1
,
4
,
2
,
0
);
__visc__bindIn
(
nodeAdd1
,
5
,
3
,
0
);
// node, node, type, src, dst, stream
__visc__edge
(
nodeAdd1
,
nodeTanh1
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd1
,
nodeTanh1
,
1
,
1
,
1
,
0
);
// node, node, type, src, dst, stream
__visc__edge
(
nodeTanh1
,
nodePool1
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh1
,
nodePool1
,
1
,
1
,
1
,
0
);
/**** Conv Layer 2 ****/
// ConvOp2
__visc__bindIn
(
nodeConv2
,
6
,
2
,
0
);
__visc__bindIn
(
nodeConv2
,
7
,
3
,
0
);
__visc__edge
(
nodePool1
,
nodeConv2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodePool1
,
nodeConv2
,
1
,
1
,
1
,
0
);
// AddOp2
__visc__bindIn
(
nodeAdd2
,
8
,
2
,
0
);
__visc__bindIn
(
nodeAdd2
,
9
,
3
,
0
);
__visc__edge
(
nodeConv2
,
nodeAdd2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeConv2
,
nodeAdd2
,
1
,
1
,
1
,
0
);
// TanhOp2
__visc__edge
(
nodeAdd2
,
nodeTanh2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd2
,
nodeTanh2
,
1
,
1
,
1
,
0
);
// PoolOp2
__visc__edge
(
nodeTanh2
,
nodePool2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh2
,
nodePool2
,
1
,
1
,
1
,
0
);
/**** Conv Layer 3 ****/
// ConvOp3
__visc__bindIn
(
nodeConv3
,
10
,
2
,
0
);
__visc__bindIn
(
nodeConv3
,
11
,
3
,
0
);
__visc__edge
(
nodePool2
,
nodeConv3
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodePool2
,
nodeConv3
,
1
,
1
,
1
,
0
);
// AddOp3
__visc__bindIn
(
nodeAdd3
,
12
,
2
,
0
);
__visc__bindIn
(
nodeAdd3
,
13
,
3
,
0
);
__visc__edge
(
nodeConv3
,
nodeAdd3
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeConv3
,
nodeAdd3
,
1
,
1
,
1
,
0
);
// TanhOp3
__visc__edge
(
nodeAdd3
,
nodeTanh3
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd3
,
nodeTanh3
,
1
,
1
,
1
,
0
);
/**** Conv Layer 4 ****/
// ConvOp4
__visc__bindIn
(
nodeConv4
,
14
,
2
,
0
);
__visc__bindIn
(
nodeConv4
,
15
,
3
,
0
);
__visc__edge
(
nodeTanh3
,
nodeConv4
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh3
,
nodeConv4
,
1
,
1
,
1
,
0
);
// AddOp4
__visc__bindIn
(
nodeAdd4
,
16
,
2
,
0
);
__visc__bindIn
(
nodeAdd4
,
17
,
3
,
0
);
__visc__edge
(
nodeConv4
,
nodeAdd4
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeConv4
,
nodeAdd4
,
1
,
1
,
1
,
0
);
// TanhOp4
__visc__edge
(
nodeAdd4
,
nodeTanh4
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd4
,
nodeTanh4
,
1
,
1
,
1
,
0
);
/**** Conv Layer 5 ****/
// ConvOp5
__visc__bindIn
(
nodeConv5
,
18
,
2
,
0
);
__visc__bindIn
(
nodeConv5
,
19
,
3
,
0
);
__visc__edge
(
nodeTanh4
,
nodeConv5
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh4
,
nodeConv5
,
1
,
1
,
1
,
0
);
// AddOp5
__visc__bindIn
(
nodeAdd5
,
20
,
2
,
0
);
__visc__bindIn
(
nodeAdd5
,
21
,
3
,
0
);
__visc__edge
(
nodeConv5
,
nodeAdd5
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeConv5
,
nodeAdd5
,
1
,
1
,
1
,
0
);
// TanhOp5
__visc__edge
(
nodeAdd5
,
nodeTanh5
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd5
,
nodeTanh5
,
1
,
1
,
1
,
0
);
// PoolOp5
__visc__edge
(
nodeTanh5
,
nodePool5
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh5
,
nodePool5
,
1
,
1
,
1
,
0
);
/**** FC Layer 1 ****/
// MulOp6
__visc__bindIn
(
nodeMul6
,
22
,
2
,
0
);
__visc__bindIn
(
nodeMul6
,
23
,
3
,
0
);
__visc__edge
(
nodePool5
,
nodeMul6
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodePool5
,
nodeMul6
,
1
,
1
,
1
,
0
);
// AddOp6
__visc__bindIn
(
nodeAdd6
,
24
,
2
,
0
);
__visc__bindIn
(
nodeAdd6
,
25
,
3
,
0
);
__visc__edge
(
nodeMul6
,
nodeAdd6
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeMul6
,
nodeAdd6
,
1
,
1
,
1
,
0
);
/***** Output Binding ****/
__visc__bindOut
(
nodeAdd6
,
0
,
0
,
0
);
__visc__bindOut
(
nodeAdd6
,
1
,
1
,
0
);
}
// Return type for the nodes
struct
ret_t
{
void
*
tensor
;
size_t
bytes
;
};
typedef
struct
__attribute__
((
__packed__
))
{
void
*
x
;
size_t
x_bytes
;
// 1st Layer parameters
void
*
conv1_w
;
size_t
conv1_w_bytes
;
void
*
conv1_b
;
size_t
conv1_b_bytes
;
// 2nd Layer parameters
void
*
conv2_w
;
size_t
conv2_w_bytes
;
void
*
conv2_b
;
size_t
conv2_b_bytes
;
// 3rd Layer parameters
void
*
conv3_w
;
size_t
conv3_w_bytes
;
void
*
conv3_b
;
size_t
conv3_b_bytes
;
// 4th Layer parameters
void
*
conv4_w
;
size_t
conv4_w_bytes
;
void
*
conv4_b
;
size_t
conv4_b_bytes
;
// 5th Layer parameters
void
*
conv5_w
;
size_t
conv5_w_bytes
;
void
*
conv5_b
;
size_t
conv5_b_bytes
;
// 6th Layer parameters
void
*
fc1_w
;
size_t
fc1_w_bytes
;
void
*
fc1_b
;
size_t
fc1_b_bytes
;
struct
ret_t
r
;
}
RootIn
;
int
main
()
{
int
test_batch_size
=
5000
;
std
::
string
prefix
=
"../../../../../../projects/hpvm-tensor-rt/model_params"
;
std
::
string
input_data_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/norm_cifar_input.bin"
);
std
::
string
labels_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/test_labels.bin"
);
std
::
string
conv1_w_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv1.bin"
);
std
::
string
conv1_b_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv1_bias.bin"
);
std
::
string
conv2_w_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv2.bin"
);
std
::
string
conv2_b_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv2_bias.bin"
);
std
::
string
conv3_w_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv3.bin"
);
std
::
string
conv3_b_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv3_bias.bin"
);
std
::
string
conv4_w_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv4.bin"
);
std
::
string
conv4_b_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv4_bias.bin"
);
std
::
string
conv5_w_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv5.bin"
);
std
::
string
conv5_b_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/conv5_bias.bin"
);
std
::
string
fc1_w_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/fc1.bin"
);
std
::
string
fc1_b_path
=
prefix
+
std
::
string
(
"/alexnet_cifar10/fc1_bias.bin"
);
printf
(
"Reading Input Data from = %s
\n
"
,
input_data_path
.
c_str
());
uint8_t
*
labels
=
readLabels
(
labels_path
.
c_str
(),
test_batch_size
);
void
*
x
=
readTrainedWeights
(
input_data_path
.
c_str
(),
float_type
,
test_batch_size
,
3
,
32
,
32
);
// Loading convolution weights
void
*
conv1_w
=
readTrainedWeights
(
conv1_w_path
.
c_str
(),
float_type
,
64
,
3
,
11
,
11
);
void
*
conv1_b
=
readTrainedWeights
(
conv1_b_path
.
c_str
(),
float_type
,
1
,
64
,
1
,
1
);
void
*
conv2_w
=
readTrainedWeights
(
conv2_w_path
.
c_str
(),
float_type
,
192
,
64
,
5
,
5
);
void
*
conv2_b
=
readTrainedWeights
(
conv2_b_path
.
c_str
(),
float_type
,
1
,
192
,
1
,
1
);
void
*
conv3_w
=
readTrainedWeights
(
conv3_w_path
.
c_str
(),
float_type
,
384
,
192
,
3
,
3
);
void
*
conv3_b
=
readTrainedWeights
(
conv3_b_path
.
c_str
(),
float_type
,
1
,
384
,
1
,
1
);
void
*
conv4_w
=
readTrainedWeights
(
conv4_w_path
.
c_str
(),
float_type
,
256
,
384
,
3
,
3
);
void
*
conv4_b
=
readTrainedWeights
(
conv4_b_path
.
c_str
(),
float_type
,
1
,
256
,
1
,
1
);
void
*
conv5_w
=
readTrainedWeights
(
conv5_w_path
.
c_str
(),
float_type
,
256
,
256
,
3
,
3
);
void
*
conv5_b
=
readTrainedWeights
(
conv5_b_path
.
c_str
(),
float_type
,
1
,
256
,
1
,
1
);
// Loading FC layer weights
void
*
fc1_w
=
readTrainedWeights
(
fc1_w_path
.
c_str
(),
float_type
,
1
,
1
,
4096
,
10
);
void
*
fc1_b
=
readTrainedWeights
(
fc1_b_path
.
c_str
(),
float_type
,
1
,
10
,
1
,
1
);
__visc__init
();
RootIn
*
args
=
static_cast
<
RootIn
*>
(
malloc
(
sizeof
(
RootIn
)));
args
->
x
=
x
;
args
->
x_bytes
=
0
;
// Conv Layers params
args
->
conv1_w
=
conv1_w
;
args
->
conv1_w_bytes
=
0
;
args
->
conv1_b
=
conv1_b
;
args
->
conv1_b_bytes
=
0
;
args
->
conv2_w
=
conv2_w
;
args
->
conv2_w_bytes
=
0
;
args
->
conv2_b
=
conv2_b
;
args
->
conv2_b_bytes
=
0
;
args
->
conv3_w
=
conv3_w
;
args
->
conv3_w_bytes
=
0
;
args
->
conv3_b
=
conv3_b
;
args
->
conv3_b_bytes
=
0
;
args
->
conv4_w
=
conv4_w
;
args
->
conv4_w_bytes
=
0
;
args
->
conv4_b
=
conv4_b
;
args
->
conv4_b_bytes
=
0
;
args
->
conv5_w
=
conv5_w
;
args
->
conv5_w_bytes
=
0
;
args
->
conv5_b
=
conv5_b
;
args
->
conv5_b_bytes
=
0
;
// FC Layers params
args
->
fc1_w
=
fc1_w
;
args
->
fc1_w_bytes
=
0
;
args
->
fc1_b
=
fc1_b
;
args
->
fc1_b_bytes
=
0
;
void
*
dfg
=
__visc__launch
(
0
,
root
,
(
void
*
)
args
);
__visc__wait
(
dfg
);
// FIXME: Value returned in the wrong index!!
//void *r = static_cast<RootIn*>(args)->r.tensor;
void
*
result
=
static_cast
<
RootIn
*>
(
args
)
->
x
;
hpvm_request_tensor
(
result
,
0
);
__visc__cleanup
();
computeAccuracy2
(
labels
,
test_batch_size
,
result
);
return
0
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment