Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
67383b7b
Commit
67383b7b
authored
5 years ago
by
Elizabeth
Browse files
Options
Downloads
Patches
Plain Diff
Added fp16 baseline replacement
parent
dff99ab6
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/projects/soc_simulator/src/driver_new_config_v2.py
+97
-71
97 additions, 71 deletions
llvm/projects/soc_simulator/src/driver_new_config_v2.py
with
97 additions
and
71 deletions
llvm/projects/soc_simulator/src/driver_new_config_v2.py
+
97
−
71
View file @
67383b7b
...
...
@@ -34,7 +34,8 @@ class Driver:
# Operation names need to be stored in order of insertion
self
.
__tensor_table
=
defaultdict
(
lambda
:
list
(
defaultdict
(
str
)))
self
.
__conf_results
=
{}
# {conf name: (first line, [[layer value if promise], [tensor vals if gpu]])}
self
.
__conf_results
=
[]
# indexed
#self.__conf_results = {} # {conf name: (first line, [[layer value if promise], [tensor vals if gpu]])}
@staticmethod
...
...
@@ -77,7 +78,6 @@ class Driver:
if
not
os
.
path
.
isfile
(
self
.
__layer_filename
):
print
(
"
ERROR: %s was not found.
"
%
self
.
__layer_filename
)
exit
(
1
)
layer_file
=
open
(
self
.
__layer_filename
,
"
r
"
)
for
line
in
layer_file
:
layer_data
=
line
.
strip
().
split
(
'
,
'
)
...
...
@@ -139,14 +139,10 @@ class Driver:
operation_data
[
"
Name
"
]
=
op_name
# Number of data items (#s) needs to match up with the # of cols
#print(len(op_data) - 1, len(col_names))
#print(op_data)
#print(col_names)
assert
(
len
(
op_data
)
-
1
==
len
(
col_names
))
#assert(len(op_data) - 1 == len(col_names))
# Go through all data items (each col element) per operation
for
i
in
range
(
len
(
col_names
)):
#print(col_names[i], float(op_data[i + 1]))
operation_data
[
col_names
[
i
]]
=
float
(
op_data
[
i
+
1
])
layer_operations
.
append
(
operation_data
)
...
...
@@ -180,21 +176,24 @@ class Driver:
line
=
config_file
.
readline
().
strip
()
first_line
=
line
conf_name
=
line
.
split
(
'
'
)[
0
]
print
(
"
CONF NAME: %s
"
%
conf_name
)
assert
(
conf_name
.
startswith
(
"
conf
"
))
line
=
config_file
.
readline
().
strip
()
while
line
!=
"
-----
"
:
layer_as_lst
=
line
.
split
(
'
'
)
layer_results
=
[]
# Skip softmax
if
line
.
find
(
"
softmax
"
)
!=
-
1
:
layer_results
.
append
((
0
,
0
,
'
'
.
join
(
layer_as_lst
[
2
:])))
curr_conf_results
.
append
((
layer_as_lst
[
1
],
layer_results
))
line
=
config_file
.
readline
().
strip
()
continue
layer_as_lst
=
line
.
split
(
'
'
)
layer_ind
=
int
(
layer_as_lst
[
0
])
-
1
layer_table_data
=
self
.
__tensor_layers
[
layer_ind
]
layer_name
=
layer_table_data
[
"
Name
"
]
layer_results
=
[]
if
Driver
.
is_promise
(
layer_as_lst
[
1
]):
print
(
"
Running layer %s on PROMISE
"
%
layer_name
)
curr_layer
=
Driver
.
PrecisionTypes
.
PROMISE
...
...
@@ -209,13 +208,11 @@ class Driver:
time
,
energy
=
self
.
__run_promise_simulation
(
param_val
,
layer_table_data
)
total_time
+=
time
total_energy
+=
energy
layer_results
.
append
((
total_time
,
total_energy
,
'
'
.
join
(
layer_as_lst
[
1
:])))
layer_results
.
append
((
total_time
,
total_energy
,
'
'
.
join
(
layer_as_lst
[
2
:])))
elif
Driver
.
is_gpu
(
layer_as_lst
[
1
]):
print
(
"
Running layer %s on the GPU
"
%
layer_name
)
total_time
=
0
total_energy
=
0
tensor_count
=
0
# 3 elements per tensor operation
...
...
@@ -225,45 +222,66 @@ class Driver:
op_number
=
layer_as_lst
[
i
+
2
]
approx_type
=
None
if
precision_type
==
"
fp16
"
or
line
.
find
(
"
fp16
"
)
!=
-
1
:
if
line
.
find
(
"
fp16
"
)
!=
-
1
:
curr_layer
=
Driver
.
PrecisionTypes
.
FP16
elif
precision_type
==
"
fp32
"
or
line
.
find
(
"
fp32
"
)
!=
-
1
:
elif
line
.
find
(
"
fp32
"
)
!=
-
1
:
curr_layer
=
Driver
.
PrecisionTypes
.
FP32
elif
precision_type
==
"
perf
"
or
precision_type
==
"
samp
"
:
# Handle approx type
if
precision_type
==
"
perf
"
or
precision_type
==
"
samp
"
:
# Handle approx type
if
precision_type
==
"
perf
"
:
approx_type
=
Driver
.
ApproxTypes
.
PERF
elif
precision_type
==
"
samp
"
:
approx_type
=
Driver
.
ApproxTypes
.
SAMP
if
line
.
find
(
"
fp16
"
)
!=
-
1
:
curr_layer
=
Driver
.
PrecisionTypes
.
FP16
elif
line
.
find
(
"
fp32
"
)
!=
-
1
:
curr_layer
=
Driver
.
PrecisionTypes
.
FP32
quant_time
,
quant_energy
=
self
.
__quantize
(
curr_layer
,
prev_layer
,
\
tensor_count
,
layer_table_data
)
quant_time
,
quant_energy
=
self
.
__quantize
(
precision_type
,
op_number
,
curr_layer
,
prev_layer
,
tensor_count
,
layer_table_data
)
if
quant_time
!=
0
:
assert
i
==
2
and
layer_ind
==
0
conv_time
,
conv_energy
=
self
.
__run_gpu_simulation
(
curr_layer
,
layer_name
,
\
tensor_count
,
approx_type
,
op_number
)
layer_results
.
append
((
quant_time
+
conv_time
,
quant_energy
+
conv_energy
,
'
'
.
join
(
layer_as_lst
[
i
:
i
+
3
])))
total_time
+=
quant_time
+
conv_time
total_energy
+=
quant_energy
+
conv_energy
prev_layer
=
curr_layer
tensor_count
+=
1
line
=
config_file
.
readline
().
strip
()
prev_layer
=
curr_layer
curr_conf_results
.
append
(
layer_results
)
self
.
__conf_results
[
conf_name
]
=
(
first_line
,
curr_conf_results
)
curr_conf_results
.
append
((
layer_as_lst
[
1
],
layer_results
))
# artificially generate the fp16 baseline
if
not
self
.
__conf_results
:
# we're appending the baseline
# need to generate an artificial fp16 baseline
self
.
fp16_baseline
=
[]
for
layer_ind
,
(
hardware
,
layer
)
in
enumerate
(
curr_conf_results
):
if
len
(
layer
)
==
1
and
layer
[
0
][
2
].
find
(
"
softmax
"
)
!=
-
1
:
continue
fp16_layer
=
[]
print
(
layer_ind
,
hardware
,
layer
)
layer_table_data
=
self
.
__tensor_layers
[
layer_ind
]
layer_name
=
layer_table_data
[
"
Name
"
]
for
tensor_ind
,
(
op_time
,
op_energy
,
tensor_op
)
in
enumerate
(
layer
):
# for each operation --> include quantization time
quant_time
,
quant_energy
=
0
,
0
if
layer_ind
==
0
:
quant_time
,
quant_energy
=
self
.
__quantize
(
"
fp16
"
,
"
1
"
,
Driver
.
PrecisionTypes
.
FP16
,
None
,
0
,
layer_table_data
)
print
(
"
FP16 QUANT:
"
,
quant_time
,
quant_energy
)
tensor_info
=
self
.
__tensor_table
[
layer_name
][
tensor_ind
]
fp16_time
=
tensor_info
[
"
fp16_time
"
]
+
quant_time
fp16_energy
=
tensor_info
[
"
fp16_energy
"
]
+
quant_energy
fp16_layer
.
append
((
fp16_time
,
fp16_energy
,
tensor_op
.
replace
(
"
fp32
"
,
"
fp16
"
)))
self
.
fp16_baseline
.
append
((
hardware
,
fp16_layer
))
print
(
self
.
fp16_baseline
)
self
.
__conf_results
.
append
(
(
first_line
,
curr_conf_results
)
)
line
=
config_file
.
readline
().
strip
()
config_file
.
close
()
#print("AGGREGATE RESULTS", self.__aggregate_results)
def
__quantize
(
self
,
curr_layer
,
prev_layer
,
h2f_f2h_operation_ind
,
layer_data
):
def
__quantize
(
self
,
precision_type
,
op_number
,
curr_layer
,
prev_layer
,
h2f_f2h_operation_ind
,
layer_data
):
if
curr_layer
==
prev_layer
or
curr_layer
==
Driver
.
PrecisionTypes
.
PROMISE
\
or
prev_layer
==
Driver
.
PrecisionTypes
.
PROMISE
:
return
0.0
,
0.0
layer_name
=
layer_data
[
"
Name
"
]
# NOTE: Ignoring logic where curr == promise or prev == promise bc
...
...
@@ -275,15 +293,19 @@ class Driver:
time_key
=
None
energy_key
=
None
if
op_number
==
"
1
"
:
lookup_key
=
"
_
"
#lookup_key = precision_type
else
:
lookup_key
=
"
_
"
+
precision_type
+
str
(
op_number
)
+
"
_
"
if
curr_layer
==
Driver
.
PrecisionTypes
.
FP32
:
time_key
=
"
h2f
_
time
"
energy_key
=
"
h2f
_
energy
"
time_key
=
"
h2f
%s
time
"
%
lookup_key
energy_key
=
"
h2f
%s
energy
"
%
lookup_key
elif
curr_layer
==
Driver
.
PrecisionTypes
.
FP16
:
time_key
=
"
f2h
_
time
"
energy_key
=
"
f2h
_
energy
"
time_key
=
"
f2h
%s
time
"
%
lookup_key
energy_key
=
"
f2h
%s
energy
"
%
lookup_key
time
=
tensor_op_row
[
time_key
]
energy
=
tensor_op_row
[
energy_key
]
print
(
time_key
,
energy_key
,
time
,
energy
)
print
(
"
Quantization: (%f, %f)
"
%
(
time
,
energy
))
return
(
time
,
energy
)
...
...
@@ -315,14 +337,15 @@ class Driver:
total_time_energy
=
output
.
strip
().
split
(
'
,
'
)
assert
(
len
(
total_time_energy
)
==
2
)
print
(
"
PROMISE: (%s, %s)
"
%
(
total_time_energy
[
0
],
total_time_energy
[
1
]))
return
float
(
total_time_energy
[
0
]),
float
(
total_time_energy
[
1
])
def
__run_gpu_simulation
(
self
,
curr_layer
,
layer_name
,
tensor_ind
,
\
approx_type
=
None
,
knob_number
=
None
):
tensor_info
=
self
.
__tensor_table
[
layer_name
][
tensor_ind
]
#print(tensor_info)
#print(layer_name)
#print(tensor_ind)
time_key
=
None
energy_key
=
None
...
...
@@ -334,12 +357,10 @@ class Driver:
approx_type_str
=
"
samp
"
if
curr_layer
==
Driver
.
PrecisionTypes
.
FP32
:
print
(
"
in fp32
"
,
approx_type_str
)
time_key
=
"
fp32_%s%s_time
"
%
(
approx_type_str
,
knob_number
)
energy_key
=
"
fp32_%s%s_energy
"
%
(
approx_type_str
,
knob_number
)
elif
curr_layer
==
Driver
.
PrecisionTypes
.
FP16
:
print
(
"
in fp16
"
,
approx_type_str
)
time_key
=
"
fp16_%s%s_time
"
%
(
approx_type_str
,
knob_number
)
energy_key
=
"
fp16_%s%s_energy
"
%
(
approx_type_str
,
knob_number
)
...
...
@@ -351,11 +372,10 @@ class Driver:
elif
curr_layer
==
Driver
.
PrecisionTypes
.
FP16
:
time_key
=
"
fp16_time
"
energy_key
=
"
fp16_energy
"
#
print(time_key, energy_key)
print
(
time_key
,
energy_key
)
conversion_time
=
tensor_info
[
time_key
]
conversion_energy
=
tensor_info
[
energy_key
]
#print(conversion_time, conversion_energy)
print
(
"
GPU: (%f, %f)
"
%
(
conversion_time
,
conversion_energy
))
#print("GPU: (%f, %f)\n" % (conversion_time, conversion_energy))
return
conversion_time
,
conversion_energy
...
...
@@ -375,12 +395,13 @@ class Driver:
new_header
=
[
conf_name
]
new_header
.
append
(
repr
(
time_speedup
))
new_header
.
append
(
repr
(
energy_speedup
))
new_header
.
append
(
first_line_lst
[
-
1
])
new_header
.
append
(
first_line_lst
[
-
2
])
new_header
.
append
(
repr
(
abs
(
float
(
first_line_lst
[
-
2
])
)))
new_header
.
append
(
repr
(
abs
(
float
(
first_line_lst
[
-
1
])
)))
conf_str
.
append
(
'
'
.
join
(
new_header
))
for
ind
,
layer
in
enumerate
(
layers
):
for
ind
,
(
hardware
,
layer
)
in
enumerate
(
layers
):
layer_lst
=
[
str
(
ind
+
1
)]
layer_lst
.
append
(
hardware
)
for
op_time
,
op_energy
,
tensor_op
in
layer
:
layer_lst
.
append
(
tensor_op
)
conf_str
.
append
(
'
'
.
join
(
layer_lst
))
...
...
@@ -390,62 +411,67 @@ class Driver:
baseline_conf
=
None
baseline_total_time
=
baseline_total_energy
=
0
def
get_baseline_times_enegies
():
def
get_baseline_times_ene
r
gies
(
conf
):
curr_time
=
curr_energy
=
0
for
layer
in
baseline_
conf
[
1
]:
for
hardware
,
layer
in
conf
[
1
]:
for
op_time
,
op_energy
,
tensor_op
in
layer
:
curr_time
+=
op_time
curr_energy
+=
op_energy
return
curr_time
,
curr_energy
def
get_final_times_energies_conf
(
curr_conf
):
def
get_final_times_energies_conf
(
curr_conf
,
curr_conf_name
):
print
(
"
_____________ NEW CONFIGURATION ___________
"
)
final_time
=
final_energy
=
0
final_conf
=
[]
final_conf
=
[]
# List (conf) of lists (layers) of tuples (operation data)
for
layer_ind
,
layer
in
enumerate
(
curr_conf
[
1
]):
#for hardware, layer in self.fp16_baseline:
#print(hardware, layer)
for
layer_ind
,
(
hardware
,
layer
)
in
enumerate
(
curr_conf
[
1
]):
final_conf_layer
=
[]
for
tensor_ind
,
(
op_time
,
op_energy
,
tensor_op
)
in
enumerate
(
layer
):
baseline_time
,
baseline_energy
,
baseline_op
=
baseline_conf
[
1
][
layer_ind
][
tensor_ind
]
if
tensor_op
.
find
(
"
softmax
"
)
!=
-
1
:
continue
# layer name, operation name, val name
baseline_time
=
self
.
fp16_baseline
[
layer_ind
][
1
][
tensor_ind
][
0
]
baseline_energy
=
self
.
fp16_baseline
[
layer_ind
][
1
][
tensor_ind
][
1
]
baseline_op
=
self
.
fp16_baseline
[
layer_ind
][
1
][
tensor_ind
][
2
]
print
(
baseline_time
,
baseline_energy
,
baseline_op
)
print
(
op_time
,
tensor_op
)
final_tensor_op
=
tensor_op
#print(op_time > baseline_time)
if
op_time
>
baseline_time
:
print
(
"
**************** BIGGER ******************
"
)
final_time
+=
baseline_time
final_tensor_op
=
baseline_op
else
:
final_time
+=
op_time
# Ignoring bigger energies for now
'''
if op_energy > baseline_energy:
print(
"
BIGGER ENERGY
"
)
final_energy
+=
baseline_energy
final_tensor_op = baseline_op
final_tensor_op
=
baseline_op
else
:
final_time
+=
op_time
final_energy
+=
op_energy
'''
final_energy
+=
op_energy
final_conf_layer
.
append
((
None
,
None
,
final_tensor_op
))
# Don't care about the times and energies when writing
final_conf
.
append
(
final_conf_layer
)
final_conf
.
append
((
hardware
,
final_conf_layer
))
print
(
"
\n
"
)
return
final_time
,
final_energy
,
(
curr_conf
[
0
],
final_conf
)
conf_index
=
0
print
(
"
RESULTS
"
)
for
line
in
config_file
:
if
line
.
startswith
(
"
conf
"
):
orig_line_lst
=
line
.
split
(
'
'
)
conf_name
=
orig_line_lst
[
0
]
if
not
baseline_conf
:
baseline_conf
=
self
.
__conf_results
[
conf_name
]
print
(
"
FOUND baseline
"
,
baseline_conf
)
baseline_total_time
,
baseline_total_energy
=
get_baseline_times_enegies
()
results_file
.
write
(
"
%s
\n
"
%
repr
(
baseline_total_time
))
# write baseline time to top of file
baseline_conf
=
self
.
__conf_results
[
conf_index
]
#conf_name]
baseline_total_time
,
baseline_total_energy
=
get_baseline_times_energies
(
baseline_conf
)
results_file
.
write
(
"
%s
\n
"
%
repr
(
baseline_total_time
))
write_conf_to_file
(
conf_name
,
baseline_conf
,
1
,
1
)
else
:
curr_conf
=
self
.
__conf_results
[
conf_name
]
final_time
,
final_energy
,
curr_conf
=
get_final_times_energies_conf
(
curr_conf
)
assert
(
final_time
<=
baseline_total_time
)
#assert(final_energy <= baseline_total_energy)
write_conf_to_file
(
conf_name
,
curr_conf
,
final_time
/
baseline_total_time
,
final_energy
/
baseline_total_energy
)
curr_conf
=
self
.
__conf_results
[
conf_index
]
#conf_name]
final_time
,
final_energy
,
=
get_baseline_times_energies
(
curr_conf
)
#final_time, final_energy, curr_conf = get_final_times_energies_conf(curr_conf, conf_name)
write_conf_to_file
(
conf_name
,
curr_conf
,
baseline_total_time
/
final_time
,
baseline_total_energy
/
final_energy
)
conf_index
+=
1
results_file
.
close
()
config_file
.
close
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment