Skip to content
Snippets Groups Projects
Commit 67383b7b authored by Elizabeth's avatar Elizabeth
Browse files

Added fp16 baseline replacement

parent dff99ab6
No related branches found
No related tags found
No related merge requests found
......@@ -34,7 +34,8 @@ class Driver:
# Operation names need to be stored in order of insertion
self.__tensor_table = defaultdict(lambda: list(defaultdict(str)))
self.__conf_results = {} # {conf name: (first line, [[layer value if promise], [tensor vals if gpu]])}
self.__conf_results = [] # indexed
#self.__conf_results = {} # {conf name: (first line, [[layer value if promise], [tensor vals if gpu]])}
@staticmethod
......@@ -77,7 +78,6 @@ class Driver:
if not os.path.isfile(self.__layer_filename):
print("ERROR: %s was not found." % self.__layer_filename)
exit(1)
layer_file = open(self.__layer_filename, "r")
for line in layer_file:
layer_data = line.strip().split(',')
......@@ -139,14 +139,10 @@ class Driver:
operation_data["Name"] = op_name
# Number of data items (#s) needs to match up with the # of cols
#print(len(op_data) - 1, len(col_names))
#print(op_data)
#print(col_names)
assert(len(op_data) - 1 == len(col_names))
#assert(len(op_data) - 1 == len(col_names))
# Go through all data items (each col element) per operation
for i in range(len(col_names)):
#print(col_names[i], float(op_data[i + 1]))
operation_data[col_names[i]] = float(op_data[i + 1])
layer_operations.append(operation_data)
......@@ -180,21 +176,24 @@ class Driver:
line = config_file.readline().strip()
first_line = line
conf_name = line.split(' ')[0]
print("CONF NAME: %s" % conf_name)
assert(conf_name.startswith("conf"))
line = config_file.readline().strip()
while line != "-----":
layer_as_lst = line.split(' ')
layer_results = []
# Skip softmax
if line.find("softmax") != -1:
layer_results.append((0, 0, ' '.join(layer_as_lst[2:])))
curr_conf_results.append((layer_as_lst[1], layer_results))
line = config_file.readline().strip()
continue
layer_as_lst = line.split(' ')
layer_ind = int(layer_as_lst[0]) - 1
layer_table_data = self.__tensor_layers[layer_ind]
layer_name = layer_table_data["Name"]
layer_results = []
if Driver.is_promise(layer_as_lst[1]):
print("Running layer %s on PROMISE" % layer_name)
curr_layer = Driver.PrecisionTypes.PROMISE
......@@ -209,13 +208,11 @@ class Driver:
time, energy = self.__run_promise_simulation(param_val, layer_table_data)
total_time += time
total_energy += energy
layer_results.append((total_time, total_energy, ' '.join(layer_as_lst[1:])))
layer_results.append((total_time, total_energy, ' '.join(layer_as_lst[2:])))
elif Driver.is_gpu(layer_as_lst[1]):
print("Running layer %s on the GPU" % layer_name)
total_time = 0
total_energy = 0
tensor_count = 0
# 3 elements per tensor operation
......@@ -225,45 +222,66 @@ class Driver:
op_number = layer_as_lst[i + 2]
approx_type = None
if precision_type == "fp16" or line.find("fp16") != -1:
if line.find("fp16") != -1:
curr_layer = Driver.PrecisionTypes.FP16
elif precision_type == "fp32" or line.find("fp32") != -1:
elif line.find("fp32") != -1:
curr_layer = Driver.PrecisionTypes.FP32
elif precision_type == "perf" or precision_type == "samp": # Handle approx type
if precision_type == "perf" or precision_type == "samp": # Handle approx type
if precision_type == "perf":
approx_type = Driver.ApproxTypes.PERF
elif precision_type == "samp":
approx_type = Driver.ApproxTypes.SAMP
if line.find("fp16") != -1:
curr_layer = Driver.PrecisionTypes.FP16
elif line.find("fp32") != -1:
curr_layer = Driver.PrecisionTypes.FP32
quant_time, quant_energy = self.__quantize(curr_layer, prev_layer, \
tensor_count, layer_table_data)
quant_time, quant_energy = self.__quantize(precision_type, op_number, curr_layer, prev_layer, tensor_count, layer_table_data)
if quant_time != 0:
assert i == 2 and layer_ind == 0
conv_time, conv_energy = self.__run_gpu_simulation(curr_layer, layer_name, \
tensor_count, approx_type, op_number)
layer_results.append((quant_time + conv_time, quant_energy + conv_energy, ' '.join(layer_as_lst[i : i + 3])))
total_time += quant_time + conv_time
total_energy += quant_energy + conv_energy
prev_layer = curr_layer
tensor_count += 1
line = config_file.readline().strip()
prev_layer = curr_layer
curr_conf_results.append(layer_results)
self.__conf_results[conf_name] = (first_line, curr_conf_results)
curr_conf_results.append((layer_as_lst[1], layer_results))
# artificially generate the fp16 baseline
if not self.__conf_results: # we're appending the baseline
# need to generate an artificial fp16 baseline
self.fp16_baseline = []
for layer_ind, (hardware, layer) in enumerate(curr_conf_results):
if len(layer) == 1 and layer[0][2].find("softmax") != -1: continue
fp16_layer = []
print(layer_ind, hardware, layer)
layer_table_data = self.__tensor_layers[layer_ind]
layer_name = layer_table_data["Name"]
for tensor_ind, (op_time, op_energy, tensor_op) in enumerate(layer):
# for each operation --> include quantization time
quant_time, quant_energy = 0,0
if layer_ind == 0:
quant_time, quant_energy = self.__quantize("fp16", "1", Driver.PrecisionTypes.FP16, None, 0, layer_table_data)
print("FP16 QUANT: ", quant_time, quant_energy)
tensor_info = self.__tensor_table[layer_name][tensor_ind]
fp16_time = tensor_info["fp16_time"] + quant_time
fp16_energy = tensor_info["fp16_energy"] + quant_energy
fp16_layer.append((fp16_time, fp16_energy, tensor_op.replace("fp32", "fp16")))
self.fp16_baseline.append((hardware, fp16_layer))
print(self.fp16_baseline)
self.__conf_results.append( (first_line, curr_conf_results) )
line = config_file.readline().strip()
config_file.close()
#print("AGGREGATE RESULTS", self.__aggregate_results)
def __quantize(self, curr_layer, prev_layer, h2f_f2h_operation_ind, layer_data):
def __quantize(self, precision_type, op_number, curr_layer, prev_layer, h2f_f2h_operation_ind, layer_data):
if curr_layer == prev_layer or curr_layer == Driver.PrecisionTypes.PROMISE \
or prev_layer == Driver.PrecisionTypes.PROMISE:
return 0.0, 0.0
layer_name = layer_data["Name"]
# NOTE: Ignoring logic where curr == promise or prev == promise bc
......@@ -275,15 +293,19 @@ class Driver:
time_key = None
energy_key = None
if op_number == "1":
lookup_key = "_" #lookup_key = precision_type
else:
lookup_key = "_" + precision_type + str(op_number) + "_"
if curr_layer == Driver.PrecisionTypes.FP32:
time_key = "h2f_time"
energy_key = "h2f_energy"
time_key = "h2f%stime" % lookup_key
energy_key = "h2f%senergy" % lookup_key
elif curr_layer == Driver.PrecisionTypes.FP16:
time_key = "f2h_time"
energy_key = "f2h_energy"
time_key = "f2h%stime" % lookup_key
energy_key = "f2h%senergy" % lookup_key
time = tensor_op_row[time_key]
energy = tensor_op_row[energy_key]
print(time_key, energy_key, time, energy)
print("Quantization: (%f, %f)" % (time, energy))
return (time, energy)
......@@ -315,14 +337,15 @@ class Driver:
total_time_energy = output.strip().split(',')
assert(len(total_time_energy) == 2)
print("PROMISE: (%s, %s)" % (total_time_energy[0], total_time_energy[1]))
return float(total_time_energy[0]), float(total_time_energy[1])
def __run_gpu_simulation(self, curr_layer, layer_name, tensor_ind, \
approx_type = None, knob_number = None):
tensor_info = self.__tensor_table[layer_name][tensor_ind]
#print(tensor_info)
#print(layer_name)
#print(tensor_ind)
time_key = None
energy_key = None
......@@ -334,12 +357,10 @@ class Driver:
approx_type_str = "samp"
if curr_layer == Driver.PrecisionTypes.FP32:
print("in fp32", approx_type_str)
time_key = "fp32_%s%s_time" % (approx_type_str, knob_number)
energy_key = "fp32_%s%s_energy" % (approx_type_str, knob_number)
elif curr_layer == Driver.PrecisionTypes.FP16:
print("in fp16", approx_type_str)
time_key = "fp16_%s%s_time" % (approx_type_str, knob_number)
energy_key = "fp16_%s%s_energy" % (approx_type_str, knob_number)
......@@ -351,11 +372,10 @@ class Driver:
elif curr_layer == Driver.PrecisionTypes.FP16:
time_key = "fp16_time"
energy_key = "fp16_energy"
#print(time_key, energy_key)
print(time_key, energy_key)
conversion_time = tensor_info[time_key]
conversion_energy = tensor_info[energy_key]
#print(conversion_time, conversion_energy)
print("GPU: (%f, %f)" % (conversion_time, conversion_energy))
#print("GPU: (%f, %f)\n" % (conversion_time, conversion_energy))
return conversion_time, conversion_energy
......@@ -375,12 +395,13 @@ class Driver:
new_header = [conf_name]
new_header.append(repr(time_speedup))
new_header.append(repr(energy_speedup))
new_header.append(first_line_lst[-1])
new_header.append(first_line_lst[-2])
new_header.append(repr(abs(float(first_line_lst[-2]))))
new_header.append(repr(abs(float(first_line_lst[-1]))))
conf_str.append(' '.join(new_header))
for ind, layer in enumerate(layers):
for ind, (hardware, layer) in enumerate(layers):
layer_lst = [str(ind + 1)]
layer_lst.append(hardware)
for op_time, op_energy, tensor_op in layer:
layer_lst.append(tensor_op)
conf_str.append(' '.join(layer_lst))
......@@ -390,62 +411,67 @@ class Driver:
baseline_conf = None
baseline_total_time = baseline_total_energy = 0
def get_baseline_times_enegies():
def get_baseline_times_energies(conf):
curr_time = curr_energy = 0
for layer in baseline_conf[1]:
for hardware, layer in conf[1]:
for op_time, op_energy, tensor_op in layer:
curr_time += op_time
curr_energy += op_energy
return curr_time, curr_energy
def get_final_times_energies_conf(curr_conf):
def get_final_times_energies_conf(curr_conf, curr_conf_name):
print("_____________ NEW CONFIGURATION ___________")
final_time = final_energy = 0
final_conf = []
final_conf = [] # List (conf) of lists (layers) of tuples (operation data)
for layer_ind, layer in enumerate(curr_conf[1]):
#for hardware, layer in self.fp16_baseline:
#print(hardware, layer)
for layer_ind, (hardware, layer) in enumerate(curr_conf[1]):
final_conf_layer = []
for tensor_ind, (op_time, op_energy, tensor_op) in enumerate(layer):
baseline_time, baseline_energy, baseline_op = baseline_conf[1][layer_ind][tensor_ind]
if tensor_op.find("softmax") != -1:
continue
# layer name, operation name, val name
baseline_time = self.fp16_baseline[layer_ind][1][tensor_ind][0]
baseline_energy = self.fp16_baseline[layer_ind][1][tensor_ind][1]
baseline_op = self.fp16_baseline[layer_ind][1][tensor_ind][2]
print(baseline_time, baseline_energy, baseline_op)
print(op_time, tensor_op)
final_tensor_op = tensor_op
#print(op_time > baseline_time)
if op_time > baseline_time:
print("**************** BIGGER ******************")
final_time += baseline_time
final_tensor_op = baseline_op
else:
final_time += op_time
# Ignoring bigger energies for now
'''
if op_energy > baseline_energy:
print("BIGGER ENERGY")
final_energy += baseline_energy
final_tensor_op = baseline_op
final_tensor_op = baseline_op
else:
final_time += op_time
final_energy += op_energy
'''
final_energy += op_energy
final_conf_layer.append((None, None, final_tensor_op)) # Don't care about the times and energies when writing
final_conf.append(final_conf_layer)
final_conf.append((hardware, final_conf_layer))
print("\n")
return final_time, final_energy, (curr_conf[0], final_conf)
conf_index = 0
print("RESULTS")
for line in config_file:
if line.startswith("conf"):
orig_line_lst = line.split(' ')
conf_name = orig_line_lst[0]
if not baseline_conf:
baseline_conf = self.__conf_results[conf_name]
print("FOUND baseline", baseline_conf)
baseline_total_time, baseline_total_energy = get_baseline_times_enegies()
results_file.write("%s\n" % repr(baseline_total_time)) # write baseline time to top of file
baseline_conf = self.__conf_results[conf_index] #conf_name]
baseline_total_time, baseline_total_energy = get_baseline_times_energies(baseline_conf)
results_file.write("%s\n" % repr(baseline_total_time))
write_conf_to_file(conf_name, baseline_conf, 1, 1)
else:
curr_conf = self.__conf_results[conf_name]
final_time, final_energy, curr_conf = get_final_times_energies_conf(curr_conf)
assert(final_time <= baseline_total_time)
#assert(final_energy <= baseline_total_energy)
write_conf_to_file(conf_name, curr_conf, final_time / baseline_total_time, final_energy / baseline_total_energy)
curr_conf = self.__conf_results[conf_index] #conf_name]
final_time, final_energy, = get_baseline_times_energies(curr_conf)
#final_time, final_energy, curr_conf = get_final_times_energies_conf(curr_conf, conf_name)
write_conf_to_file(conf_name, curr_conf, baseline_total_time / final_time, baseline_total_energy / final_energy)
conf_index += 1
results_file.close()
config_file.close()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment