Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
6645430b
Commit
6645430b
authored
5 years ago
by
Elizabeth
Browse files
Options
Downloads
Patches
Plain Diff
Modified driver to work with new config file
parent
8a32c5fc
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/projects/soc_simulator/src/driver_new_config.py
+328
-0
328 additions, 0 deletions
llvm/projects/soc_simulator/src/driver_new_config.py
with
328 additions
and
0 deletions
llvm/projects/soc_simulator/src/driver_new_config.py
0 → 100644
+
328
−
0
View file @
6645430b
from
collections
import
defaultdict
import
os
import
subprocess
import
sys
class
Driver
:
fp16_swing
=
8
class
ApproxTypes
:
FP16
=
0
FP32
=
1
PROMISE
=
2
PERF
=
3
results_time_key
=
"
Time
"
results_energy_key
=
"
Energy
"
def
driver
(
self
):
self
.
__parse_tensor_layer_file
()
self
.
__parse_tensor_table
()
self
.
__run_simulations
()
self
.
__display_results
()
def
__init__
(
self
,
layer_filename
,
table_filename
,
config_filename
,
results_filename
):
self
.
__layer_filename
=
layer_filename
self
.
__table_filename
=
table_filename
self
.
__config_filename
=
config_filename
self
.
__results_filename
=
results_filename
# NOTE: Use an OrderedDict if we want to search by operation name
# Using a list bc we care about the order the data is read in
# since it corresponds to the data in the configuration file
self
.
__tensor_layers
=
[]
# [layer_name][operation_name][cols]
# Operation names need to be stored in order of insertion
self
.
__tensor_table
=
defaultdict
(
lambda
:
list
(
defaultdict
(
str
)))
# [Time/Energy][number corresponding to order the layer config was read in] = time/energy
self
.
__aggregate_results
=
defaultdict
(
lambda
:
defaultdict
(
float
))
self
.
__config_count
=
0
@staticmethod
def
is_conv
(
operation_name
):
return
operation_name
.
startswith
(
"
Conv
"
)
@staticmethod
def
is_nml
(
operation_name
):
return
operation_name
.
startswith
(
"
NML
"
)
@staticmethod
def
is_fc
(
operation_name
):
return
operation_name
.
startswith
(
"
FC
"
)
def
__parse_tensor_layer_file
(
self
):
if
not
os
.
path
.
isfile
(
self
.
__layer_filename
):
print
(
"
ERROR: %s was not found.
"
%
self
.
__layer_filename
)
exit
(
1
)
layer_file
=
open
(
self
.
__layer_filename
,
"
r
"
)
for
line
in
layer_file
:
layer_data
=
line
.
strip
().
split
(
'
,
'
)
layer_name
=
layer_data
[
0
]
tensor_layer
=
defaultdict
(
str
)
tensor_layer
[
"
Name
"
]
=
layer_name
if
Driver
.
is_conv
(
layer_name
):
tensor_layer
[
"
N
"
]
=
float
(
layer_data
[
1
])
tensor_layer
[
"
Cin
"
]
=
float
(
layer_data
[
2
])
tensor_layer
[
"
H
"
]
=
float
(
layer_data
[
3
])
tensor_layer
[
"
W
"
]
=
float
(
layer_data
[
4
])
tensor_layer
[
"
Cout
"
]
=
float
(
layer_data
[
5
])
tensor_layer
[
"
Kh
"
]
=
float
(
layer_data
[
7
])
tensor_layer
[
"
Kw
"
]
=
float
(
layer_data
[
8
])
tensor_layer
[
"
Sh
"
]
=
float
(
layer_data
[
9
])
tensor_layer
[
"
Sw
"
]
=
float
(
layer_data
[
10
])
elif
Driver
.
is_fc
(
layer_name
):
tensor_layer
[
"
RA
"
]
=
float
(
layer_data
[
1
])
tensor_layer
[
"
CA
"
]
=
float
(
layer_data
[
2
])
tensor_layer
[
"
RB
"
]
=
float
(
layer_data
[
3
])
tensor_layer
[
"
CB
"
]
=
float
(
layer_data
[
4
])
elif
not
Driver
.
is_nml
(
layer_name
):
# TODO should we store data for NMLs?
print
(
"
ERROR: Invalid layer name %s
"
%
layer_name
)
exit
(
1
)
self
.
__tensor_layers
.
append
(
tensor_layer
)
layer_file
.
close
()
def
__parse_tensor_table
(
self
):
if
not
os
.
path
.
isfile
(
self
.
__table_filename
):
print
(
"
ERROR: %s was not found.
"
%
self
.
__table_filename
)
exit
(
1
)
table_file
=
open
(
self
.
__table_filename
,
"
r
"
)
line
=
table_file
.
readline
().
strip
()
while
line
:
# Line here MUST be a header or there's a bug
# Get the description of the layer
assert
(
line
.
startswith
(
"
**
"
))
header_contents
=
line
.
split
(
'
'
)[
1
:]
layer_name
=
header_contents
[
0
]
num_ops
=
int
(
header_contents
[
1
])
col_names
=
header_contents
[
2
:]
layer_operations
=
[]
# Go through all operations in the layer
for
op_count
in
range
(
num_ops
):
operation_data
=
defaultdict
(
str
)
line
=
table_file
.
readline
().
strip
()
op_data
=
line
.
split
(
'
'
)
op_name
=
op_data
[
0
]
operation_data
[
"
Name
"
]
=
op_name
# Number of data items (#s) needs to match up with the # of cols
assert
(
len
(
op_data
)
-
1
==
len
(
col_names
))
# Go through all data items (each col element) per operation
for
i
in
range
(
len
(
col_names
)):
operation_data
[
col_names
[
i
]]
=
float
(
op_data
[
i
+
1
])
layer_operations
.
append
(
operation_data
)
self
.
__tensor_table
[
layer_name
]
=
layer_operations
line
=
table_file
.
readline
().
strip
()
table_file
.
close
()
@staticmethod
def
is_promise
(
config_layer
):
return
float
(
config_layer
.
split
(
'
'
)[
0
])
<
Driver
.
fp16_swing
def
__quantize
(
self
,
curr_layer
,
prev_layer
,
h2f_f2h_operation_ind
,
layer_data
):
if
curr_layer
==
prev_layer
or
curr_layer
==
Driver
.
ApproxTypes
.
PROMISE
\
or
prev_layer
==
Driver
.
ApproxTypes
.
PROMISE
:
# No quantization needed
return
0.0
,
0.0
layer_name
=
layer_data
[
"
Name
"
]
# NOTE: Ignoring logic where curr == promise or prev == promise bc
# smartDMA is always true so we'd return near the beginning of the method
# Get h2f/f2h data using the first tensor operation in the layer
# (which is why order matters in the tensor table)
print
(
layer_name
,
self
.
__tensor_table
[
layer_name
])
tensor_op_row
=
self
.
__tensor_table
[
layer_name
][
h2f_f2h_operation_ind
]
if
curr_layer
==
Driver
.
ApproxTypes
.
FP32
:
time
=
tensor_op_row
[
"
h2f_time
"
]
energy
=
tensor_op_row
[
"
h2f_energy
"
]
elif
curr_layer
==
Driver
.
ApproxTypes
.
FP16
:
time
=
tensor_op_row
[
"
f2h_time
"
]
energy
=
tensor_op_row
[
"
f2h_energy
"
]
print
(
"
Quantization: (%f, %f)
"
%
(
time
,
energy
))
return
(
time
,
energy
)
def
__run_promise_simulation
(
self
,
swing
,
layer_data
):
layer_name
=
layer_data
[
"
Name
"
]
patch_factor
=
1
if
Driver
.
is_conv
(
layer_name
):
rows_a
=
layer_data
[
"
N
"
]
*
layer_data
[
"
H
"
]
*
layer_data
[
"
W
"
]
\
/
(
layer_data
[
"
Sh
"
]
*
layer_data
[
"
Sw
"
])
cols_a
=
layer_data
[
"
Cin
"
]
*
layer_data
[
"
Kh
"
]
*
layer_data
[
"
Kw
"
]
rows_b
=
cols_a
cols_b
=
layer_data
[
"
Cout
"
]
patch_factor
=
layer_data
[
"
Kh
"
]
*
layer_data
[
"
Kw
"
]
elif
Driver
.
is_fc
(
layer_name
):
rows_a
=
layer_data
[
"
RA
"
]
cols_a
=
layer_data
[
"
CA
"
]
rows_b
=
cols_a
cols_b
=
layer_data
[
"
CB
"
]
else
:
print
(
"
PROMISE can
'
t run whatever this layer is.
"
)
exit
(
1
)
# Run promise simulator
# TODO need to print time and energy in the ptm runner so we can pipe it
output
=
subprocess
.
Popen
([
"
./ptm
"
,
str
(
rows_a
),
str
(
cols_a
),
str
(
rows_b
),
\
str
(
cols_b
),
str
(
patch_factor
),
str
(
swing
)],
\
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
).
communicate
()[
0
]
total_time_energy
=
output
.
strip
().
split
(
'
,
'
)
assert
(
len
(
total_time_energy
)
==
2
)
print
(
"
PROMISE: (%s, %s)
"
%
(
total_time_energy
[
0
],
total_time_energy
[
1
]))
return
float
(
total_time_energy
[
0
]),
float
(
total_time_energy
[
1
])
def
__run_simulations
(
self
):
if
not
os
.
path
.
isfile
(
self
.
__config_filename
):
print
(
"
ERROR: %s was not found
"
%
self
.
__config_filename
)
exit
(
1
)
config_file
=
open
(
self
.
__config_filename
,
"
r
"
)
line
=
config_file
.
readline
().
strip
()
while
line
:
assert
(
line
.
startswith
(
"
+++++
"
))
config_name
=
config_file
.
readline
().
strip
().
split
(
'
'
)[
0
]
# Next line = configuration name
print
(
"
CONFIGURATION
"
)
line
=
config_file
.
readline
().
strip
()
layer_ind
=
0
# NOTE can also use the leftmost number in the currl ine
prev_layer
=
Driver
.
ApproxTypes
.
FP32
curr_layer
=
None
while
not
line
.
startswith
(
"
-----
"
):
layer_info
=
line
.
split
(
'
'
)
layer_data
=
self
.
__tensor_layers
[
layer_ind
]
layer_name
=
layer_data
[
"
Name
"
]
if
layer_info
[
1
]
==
"
promise
"
:
print
(
"
Running layer %s on PROMISE
"
%
layer_name
)
curr_layer
=
Driver
.
ApproxTypes
.
PROMISE
swing
=
int
(
layer_info
[
3
])
time
,
energy
=
self
.
__run_promise_simulation
(
swing
,
layer_data
)
print
(
time
,
energy
)
self
.
__aggregate_results
[
Driver
.
results_time_key
][
self
.
__config_count
]
+=
time
self
.
__aggregate_results
[
Driver
.
results_energy_key
][
self
.
__config_count
]
+=
energy
elif
layer_info
[
1
]
==
"
gpu
"
:
# Parse each individual tensor operation
# TODO not portable bc there can be multiple numbers after each approx later on
total_time
=
0
total_energy
=
0
tensor_ind
=
0
for
i
in
range
(
2
,
len
(
layer_info
),
3
):
tensor_op
=
layer_info
[
i
]
approx_type
=
layer_info
[
i
+
1
]
approx_num
=
layer_info
[
i
+
2
]
# only matters if perf
if
approx_type
==
"
fp16
"
:
curr_layer
=
Driver
.
ApproxTypes
.
FP16
elif
approx_type
==
"
fp32
"
:
curr_layer
=
Driver
.
ApproxTypes
.
FP32
elif
approx_type
==
"
perf
"
:
curr_layer
=
DriverApproxTypes
.
PERF
else
:
assert
(
False
)
quant_time
,
quant_energy
=
self
.
__quantize
(
curr_layer
,
prev_layer
,
tensor_ind
,
layer_data
)
time
,
energy
=
self
.
__run_gpu_simulation
(
curr_layer
,
layer_name
,
tensor_ind
,
approx_num
)
total_time
+=
time
total_energy
+=
energy
tensor_ind
+=
1
self
.
__aggregate_results
[
Driver
.
results_time_key
][
self
.
__config_count
]
+=
total_time
self
.
__aggregate_results
[
Driver
.
results_energy_key
][
self
.
__config_count
]
+=
total_energy
layer_ind
+=
1
line
=
config_file
.
readline
().
strip
()
self
.
__config_count
+=
1
line
=
config_file
.
readline
().
strip
()
config_file
.
close
()
def
__run_gpu_simulation
(
self
,
curr_layer
,
layer_name
,
tensor_ind
,
approx_num
):
tensor_info
=
self
.
__tensor_table
[
layer_name
][
tensor_ind
]
if
curr_layer
==
Driver
.
ApproxTypes
.
FP32
:
time
=
tensor_info
[
"
fp32_time
"
]
energy
=
tensor_info
[
"
fp32_energy
"
]
elif
curr_layer
==
Driver
.
ApproxTypes
.
FP16
:
time
=
tensor_info
[
"
fp16_time
"
]
energy
=
tensor_info
[
"
fp16_energy
"
]
elif
curr_layer
==
Driver
.
ApproxTypes
.
PERF
:
time
=
tensor_info
[
"
perf%s_energy
"
%
approx_num
]
energy
=
tensor_info
[
"
perf%s_energy
"
%
approx_num
]
print
(
"
GPU: (%f, %f)
"
%
(
time
,
energy
))
return
time
,
energy
def
__display_results
(
self
):
results_file
=
open
(
self
.
__results_filename
,
"
w
"
)
attributes_to_print
=
[
Driver
.
results_time_key
,
Driver
.
results_energy_key
]
for
attribute
in
attributes_to_print
:
results_file
.
write
(
"
%s
\n
"
%
attribute
)
results_file
.
write
(
"
Configuration,Total,Improvement
\n
"
)
baseline_val
=
self
.
__aggregate_results
[
attribute
][
0
]
print
(
baseline_val
)
best_config
=
None
best_result
=
None
for
config_ind
in
range
(
self
.
__config_count
):
results_file
.
write
(
"
c%d
"
%
config_ind
)
time_or_energy_val
=
self
.
__aggregate_results
[
attribute
][
config_ind
]
# Using repr to keep all decimal digits when writing to file
results_file
.
write
(
"
,%s
"
%
repr
(
time_or_energy_val
))
results_file
.
write
(
"
,%s
\n
"
%
repr
(
baseline_val
/
(
time_or_energy_val
+
0.0001
)))
if
not
best_result
or
time_or_energy_val
<
best_result
:
best_result
=
time_or_energy_val
best_config
=
config_ind
results_file
.
write
(
"
\n
c%d,%s
\n\n
"
%
(
best_config
,
repr
(
self
.
__aggregate_results
[
attribute
][
best_config
])))
results_file
.
close
()
if
__name__
==
"
__main__
"
:
if
len
(
sys
.
argv
)
!=
5
:
print
(
"
Usage: python driver.py <layer info> <tensor info> <configurations> <results file>
"
)
exit
(
1
)
Driver
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
],
sys
.
argv
[
4
]).
driver
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment