Skip to content
Snippets Groups Projects
Commit 64a46597 authored by Nathan Zhao's avatar Nathan Zhao
Browse files

Adding VGG ImageNet

parent 2a59ce5e
No related branches found
No related tags found
No related merge requests found
import os
import glob
import scipy
import scipy.io
import cv2
import keras
from keras.models import Model
from keras.layers import *
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.utils import to_categorical
from frontend.approxhpvm_translator import translate_to_approxhpvm
from frontend.weight_utils import dumpCalibrationData
data_format = 'channels_first'
def get_vgg16_nchw_keras():
img_input = Input(shape=(3, 224, 224))
# Block 1
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(img_input)
x = Conv2D(64, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(64, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), data_format=data_format)(x)
# Block 2
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(128, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(128, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), data_format=data_format)(x)
# Block 3
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(256, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(256, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(256, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), data_format=data_format)(x)
# Block 4
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(512, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(512, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(512, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), data_format=data_format)(x)
# Block 5
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(512, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(512, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1), data_format=data_format)(x)
x = Conv2D(512, (3, 3),
padding='valid',
data_format=data_format)(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), data_format=data_format)(x)
x = Flatten(data_format=data_format)(x)
x = Dense(4096)(x)
x = Activation('relu')(x)
x = Dense(4096)(x)
x = Activation('relu')(x)
x = Dense(1000)(x)
x = Activation('softmax')(x)
model = Model(img_input, x)
return model
def load_image(x):
try:
x = x.decode('utf-8')
except:
pass
image = cv2.imread(x)
height, width, _ = image.shape
new_height = height * 256 // min(image.shape[:2])
new_width = width * 256 // min(image.shape[:2])
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
height, width, _ = image.shape
startx = width // 2 - (224 // 2)
starty = height // 2 - (224 // 2)
image = image[starty:starty + 224, startx:startx + 224]
image = image[:, :, ::-1]
image = preprocess_input(image.astype(np.float32))
image = np.transpose(image, (2, 0, 1))
return image.astype(np.float32)
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
num_images = 5000
val_size = 100
model = VGG16()
model_nchw = get_vgg16_nchw_keras()
j = 0
for i in range(len(model_nchw.layers)):
if 'padding' in model_nchw.layers[i].name or 'activation' in model_nchw.layers[i].name:
continue
try:
model_nchw.layers[i].set_weights(model.layers[j].get_weights())
except:
print (i, model_nchw.layers[i], 'skipped')
j += 1
classes = os.listdir('/home/nz11/ILSVRC2012/train')
train_images = glob.glob('/home/nz11/ILSVRC2012/train/*/*')
val_images = glob.glob('/home/nz11/ILSVRC2012/val/*/*')
val_images = sorted(val_images, key=lambda x: x.split('/')[-1].split('_')[-1].split('.')[0])
idx = np.random.permutation(len(val_images))[:num_images]
val_images = np.array(val_images)[idx]
d = {k:v for v, k in enumerate(classes)}
X_test = []
for x in val_images:
X_test.append(load_image(x))
X_test = np.array(X_test)
meta = scipy.io.loadmat("/home/nz11/ILSVRC2012/ILSVRC2012_devkit_t12/data/meta.mat")
original_idx_to_synset = {}
synset_to_name = {}
for i in range(1000):
ilsvrc2012_id = int(meta["synsets"][i,0][0][0][0])
synset = meta["synsets"][i,0][1][0]
name = meta["synsets"][i,0][2][0]
original_idx_to_synset[ilsvrc2012_id] = synset
synset_to_name[synset] = name
synset_to_keras_idx = {}
keras_idx_to_name = {}
f = open("/home/nz11/ILSVRC2012/ILSVRC2012_devkit_t12/data/synset_words.txt","r")
c = 0
for line in f:
parts = line.split(" ")
synset_to_keras_idx[parts[0]] = c
keras_idx_to_name[c] = " ".join(parts[1:])
c += 1
f.close()
def convert_original_idx_to_keras_idx(idx):
return synset_to_keras_idx[original_idx_to_synset[idx]]
f = open("/home/nz11/ILSVRC2012/ILSVRC2012_devkit_t12/data/ILSVRC2012_validation_ground_truth.txt","r")
y_true = f.read().strip().split("\n")
y_true = list(map(int, y_true))
y_true = np.array([convert_original_idx_to_keras_idx(idx) for idx in y_true])[idx]
y_true = to_categorical(y_true, num_classes=1000)
f.close()
translate_to_approxhpvm(model_nchw, "data/vgg16_imagenet/", X_test[:val_size], y_true[:val_size], 1000)
dumpCalibrationData("data/vgg16_imagenet/test_input.bin", X_test, "data/vgg16_imagenet/test_labels.bin", y_true)
y_pred = model_nchw.predict(X_test[:val_size])
print ('val accuracy', np.sum(np.argmax(y_pred, axis=1) == np.argmax(y_true[:val_size], axis=1)) / val_size)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment