Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
62e59537
Commit
62e59537
authored
6 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Moving to efficient tree-reduction norm computation
parent
59030885
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h
+155
-3
155 additions, 3 deletions
llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h
with
155 additions
and
3 deletions
llvm/projects/hpvm-tensor-rt/tensor_runtime/include/error.h
+
155
−
3
View file @
62e59537
...
...
@@ -286,6 +286,156 @@ __global__ void normComputeKernel(float* A, float * B, double* l1_A, double* l2_
__inline__
__device__
double
warpReduceSum
(
double
val
)
{
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down
(
val
,
offset
);
return
val
;
}
__inline__
__device__
double
blockReduceSum
(
double
val
)
{
static
__shared__
double
shared
[
32
];
// Shared mem for 32 partial sums
int
lane
=
threadIdx
.
x
%
warpSize
;
int
wid
=
threadIdx
.
x
/
warpSize
;
val
=
warpReduceSum
(
val
);
// Each warp performs partial reduction
if
(
lane
==
0
)
shared
[
wid
]
=
val
;
// Write reduced value to shared memory
__syncthreads
();
// Wait for all partial reductions
//read from shared memory only if that warp existed
val
=
(
threadIdx
.
x
<
blockDim
.
x
/
warpSize
)
?
shared
[
lane
]
:
0
;
if
(
wid
==
0
)
val
=
warpReduceSum
(
val
);
//Final reduce within first warp
return
val
;
}
__global__
void
deviceReduceBlockAtomicKernel
(
float
*
A
,
float
*
B
,
int
N
,
double
*
A_l1
,
double
*
A_l2
,
double
*
diff_l1
,
double
*
diff_l2
)
{
double
sum_A_l1
=
double
(
0
);
double
sum_A_l2
=
double
(
0
);
double
sum_diff_l1
=
double
(
0
);
double
sum_diff_l2
=
double
(
0
);
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
sum_A_l1
+=
fabsf
(
A
[
i
]);
sum_A_l2
+=
(
A
[
i
]
*
A
[
i
]);
double
diff1
=
A
[
i
]
-
B
[
i
];
sum_diff_l1
+=
fabsf
(
diff1
);
double
diff2
=
diff1
*
diff1
;
sum_diff_l2
+=
diff2
;
}
sum_A_l1
=
blockReduceSum
(
sum_A_l1
);
sum_A_l2
=
blockReduceSum
(
sum_A_l2
);
sum_diff_l1
=
blockReduceSum
(
sum_diff_l1
);
sum_diff_l2
=
blockReduceSum
(
sum_diff_l2
);
if
(
threadIdx
.
x
==
0
){
atomicAdd
(
A_l1
,
sum_A_l1
);
atomicAdd
(
A_l2
,
sum_A_l2
);
atomicAdd
(
diff_l1
,
sum_diff_l1
);
atomicAdd
(
diff_l2
,
sum_diff_l2
);
}
}
void
deviceReduce
(
float
*
A
,
float
*
B
,
int
N
,
double
*
A_l1
,
double
*
A_l2
,
double
*
diff_l1
,
double
*
diff_l2
)
{
int
threads
=
512
;
int
blocks
=
min
((
N
+
threads
-
1
)
/
threads
,
1024
);
deviceReduceBlockAtomicKernel
<<<
blocks
,
threads
>>>
(
A
,
B
,
N
,
A_l1
,
A_l2
,
diff_l1
,
diff_l2
);
//-- deviceReduceKernel<<<1, 1024>>>(out, out, blocks);
}
// Compute Norms on the GPU
Norm_t
*
calculateNormsTreeReduction
(
Tensor
*
x
,
Tensor
*
x_orig
){
hostToDeviceCopy
(
x
);
hostToDeviceCopy
(
x_orig
);
// FIXIT: Move all floats to doubles - overflow is possible
double
l1_norm_A
;
double
l2_norm_A
;
double
l1_diff
;
double
l2_diff
;
// Device pointers
double
*
l1_norm_A_d
;
double
*
l2_norm_A_d
;
double
*
l1_diff_d
;
double
*
l2_diff_d
;
cudaMalloc
(
(
void
**
)
&
l1_norm_A_d
,
sizeof
(
double
));
cudaMalloc
(
(
void
**
)
&
l2_norm_A_d
,
sizeof
(
double
));
cudaMalloc
(
(
void
**
)
&
l1_diff_d
,
sizeof
(
double
));
cudaMalloc
(
(
void
**
)
&
l2_diff_d
,
sizeof
(
double
));
float
*
arr1
=
(
float
*
)
x
->
gpu_data
;
float
*
arr2
=
(
float
*
)
x_orig
->
gpu_data
;
//normComputeKernel<<<gridSize, blockSize>>>(arr1, arr2, l1_norm_A_d, l2_norm_A_d, l1_diff_d, l2_diff_d, x->num_elems);
deviceReduce
(
arr1
,
arr2
,
x
->
num_elems
,
l1_norm_A_d
,
l2_norm_A_d
,
l1_diff_d
,
l2_diff_d
);
cudaMemcpy
(
&
l1_norm_A
,
l1_norm_A_d
,
sizeof
(
double
),
cudaMemcpyDeviceToHost
);
cudaMemcpy
(
&
l2_norm_A
,
l2_norm_A_d
,
sizeof
(
double
),
cudaMemcpyDeviceToHost
);
cudaMemcpy
(
&
l1_diff
,
l1_diff_d
,
sizeof
(
double
),
cudaMemcpyDeviceToHost
);
cudaMemcpy
(
&
l2_diff
,
l2_diff_d
,
sizeof
(
double
),
cudaMemcpyDeviceToHost
);
INFO
(
"l1_norm_A = %f, l2_norm_A = %f, l1_diff = %f, l2_diff = %f
\n
"
,
l1_norm_A
,
l2_norm_A
,
l1_diff
,
l2_diff
);
// Relative L1 and Mean L1 norms of the difference Matrix
float
mean_l1
=
l1_diff
/
x
->
num_elems
;
float
relative_l1
=
l1_diff
/
l1_norm_A
;
// Computing Relative L2 norm - i.e., Euclidean distance
double
norm_root_A
=
sqrt
(
l2_norm_A
);
double
diff_root
=
sqrt
(
l2_diff
);
float
mean_l2
=
diff_root
/
x
->
num_elems
;
float
relative_l2
=
diff_root
/
norm_root_A
;
// Packing computed norms in Norm_t struct
Norm_t
*
norms
=
(
Norm_t
*
)
malloc
(
sizeof
(
Norm_t
));
// Mean metrics - not normalized for the distribution - suitable for precision tuning hardware
norms
->
mean_l1
=
mean_l1
;
norms
->
mean_l2
=
mean_l2
;
norms
->
orig_inf_norm
=
0
.
0
;
// Relative metrics (relative to distribution) - suitable for PROMISE
norms
->
l1_norm
=
relative_l1
;
norms
->
l2_norm
=
relative_l2
;
norms
->
inf_norm
=
0
.
0
;
INFO
(
"l1_norm = %f
\n
"
,
relative_l1
);
INFO
(
"l2_norm = %f
\n
"
,
relative_l2
);
return
norms
;
}
// Compute Norms on the GPU
Norm_t
*
calculateNormsGPU
(
Tensor
*
x
,
Tensor
*
x_orig
){
...
...
@@ -407,8 +557,8 @@ void initRandValues(Tensor* bias, int error_scale){
scaling_values
[
2
]
=
0
.
03
;
scaling_values
[
3
]
=
0
.
06
;
scaling_values
[
4
]
=
0
.
08
;
scaling_values
[
5
]
=
0
.
1
;
scaling_values
[
6
]
=
0
.
13
;
scaling_values
[
5
]
=
0
.
1
05
;
scaling_values
[
6
]
=
0
.
13
4
;
scaling_values
[
7
]
=
0
.
16
;
scaling_values
[
8
]
=
0
.
2
;
scaling_values
[
9
]
=
0
.
23
;
...
...
@@ -495,6 +645,7 @@ void* addBitError(void* x_ptr, int error_scale){
Norm_t
*
norms
=
calculateNorms2
(
x
,
x_original
);
profileEvent
(
"tensorBitError_end"
,
true
);
...
...
@@ -634,8 +785,9 @@ void* addGaussianError(void* x_ptr, int error_scale){
//Norm_t* norms = calculateNorms2(x, x_original);
Norm_t
*
norms
=
calculateNormsGPU
(
x
,
x_original
);
//
Norm_t* norms = calculateNormsGPU(x, x_original);
Norm_t
*
norms
=
calculateNormsTreeReduction
(
x
,
x_original
);
freeTensor
(
x_original
);
freeTensor
(
bias
);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment