Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
5738e7de
Commit
5738e7de
authored
6 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Plain Diff
merging
parents
8e7c6a04
685d89c6
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/test/VISC/DNN_Benchmarks/benchmarks/mobilenet_shallow/src/mobilenet_shallow_promise.cpp
+1225
-0
1225 additions, 0 deletions
...marks/mobilenet_shallow/src/mobilenet_shallow_promise.cpp
with
1225 additions
and
0 deletions
llvm/test/VISC/DNN_Benchmarks/benchmarks/mobilenet_shallow/src/mobilenet_shallow_promise.cpp
0 → 100644
+
1225
−
0
View file @
5738e7de
#include
<stdio.h>
#include
<stdlib.h>
#include
<unistd.h>
#include
<fcntl.h>
#include
<sys/stat.h>
#include
<cstring>
#include
<visc.h>
#include
<tensorTypes.h>
#include
<tensorUtils.h>
void
var_0_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_1_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_2_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_3_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_group_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
,
1
,
32
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_4_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_5_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_6_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
0
,
0
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_7_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_8_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_9_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_group_convolution
(
t1
,
t2
,
1
,
1
,
2
,
2
,
1
,
64
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_10_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_11_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_12_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
0
,
0
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_13_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_14_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_15_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_group_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
,
1
,
128
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_16_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_17_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_18_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
0
,
0
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_19_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_20_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_21_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_group_convolution
(
t1
,
t2
,
1
,
1
,
2
,
2
,
1
,
128
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_22_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_23_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_24_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
0
,
0
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_25_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_26_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_27_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_group_convolution
(
t1
,
t2
,
1
,
1
,
1
,
1
,
1
,
256
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_28_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_29_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_30_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
0
,
0
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_31_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_32_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_33_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_group_convolution
(
t1
,
t2
,
1
,
1
,
2
,
2
,
1
,
256
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_34_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_35_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_36_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
0
,
0
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_37_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
,
void
*
t3
,
size_t
bytes_t3
,
void
*
t4
,
size_t
bytes_t4
,
void
*
t5
,
size_t
bytes_t5
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
5
,
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
void
*
r
=
__visc__tensor_batchnorm
(
t1
,
t2
,
t3
,
t4
,
t5
,
0.001
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_38_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_relu
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_39_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_mean
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_40_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_mul
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_41_node
(
void
*
t1
,
size_t
bytes_t1
,
void
*
t2
,
size_t
bytes_t2
)
{
__visc__hint
(
visc
::
PROMISE_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
var_42_node
(
void
*
t1
,
size_t
bytes_t1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_softmax
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
root
(
void
*
input
,
size_t
input_bytes
,
void
*
conv2d_1_w
,
size_t
conv2d_1_w_bytes
,
void
*
batch_normalization_1_gamma
,
size_t
batch_normalization_1_gamma_bytes
,
void
*
batch_normalization_1_beta
,
size_t
batch_normalization_1_beta_bytes
,
void
*
batch_normalization_1_mean
,
size_t
batch_normalization_1_mean_bytes
,
void
*
batch_normalization_1_variance
,
size_t
batch_normalization_1_variance_bytes
,
void
*
depthwise_conv2d_1_w
,
size_t
depthwise_conv2d_1_w_bytes
,
void
*
batch_normalization_2_gamma
,
size_t
batch_normalization_2_gamma_bytes
,
void
*
batch_normalization_2_beta
,
size_t
batch_normalization_2_beta_bytes
,
void
*
batch_normalization_2_mean
,
size_t
batch_normalization_2_mean_bytes
,
void
*
batch_normalization_2_variance
,
size_t
batch_normalization_2_variance_bytes
,
void
*
conv2d_2_w
,
size_t
conv2d_2_w_bytes
,
void
*
batch_normalization_3_gamma
,
size_t
batch_normalization_3_gamma_bytes
,
void
*
batch_normalization_3_beta
,
size_t
batch_normalization_3_beta_bytes
,
void
*
batch_normalization_3_mean
,
size_t
batch_normalization_3_mean_bytes
,
void
*
batch_normalization_3_variance
,
size_t
batch_normalization_3_variance_bytes
,
void
*
depthwise_conv2d_2_w
,
size_t
depthwise_conv2d_2_w_bytes
,
void
*
batch_normalization_4_gamma
,
size_t
batch_normalization_4_gamma_bytes
,
void
*
batch_normalization_4_beta
,
size_t
batch_normalization_4_beta_bytes
,
void
*
batch_normalization_4_mean
,
size_t
batch_normalization_4_mean_bytes
,
void
*
batch_normalization_4_variance
,
size_t
batch_normalization_4_variance_bytes
,
void
*
conv2d_3_w
,
size_t
conv2d_3_w_bytes
,
void
*
batch_normalization_5_gamma
,
size_t
batch_normalization_5_gamma_bytes
,
void
*
batch_normalization_5_beta
,
size_t
batch_normalization_5_beta_bytes
,
void
*
batch_normalization_5_mean
,
size_t
batch_normalization_5_mean_bytes
,
void
*
batch_normalization_5_variance
,
size_t
batch_normalization_5_variance_bytes
,
void
*
depthwise_conv2d_3_w
,
size_t
depthwise_conv2d_3_w_bytes
,
void
*
batch_normalization_6_gamma
,
size_t
batch_normalization_6_gamma_bytes
,
void
*
batch_normalization_6_beta
,
size_t
batch_normalization_6_beta_bytes
,
void
*
batch_normalization_6_mean
,
size_t
batch_normalization_6_mean_bytes
,
void
*
batch_normalization_6_variance
,
size_t
batch_normalization_6_variance_bytes
,
void
*
conv2d_4_w
,
size_t
conv2d_4_w_bytes
,
void
*
batch_normalization_7_gamma
,
size_t
batch_normalization_7_gamma_bytes
,
void
*
batch_normalization_7_beta
,
size_t
batch_normalization_7_beta_bytes
,
void
*
batch_normalization_7_mean
,
size_t
batch_normalization_7_mean_bytes
,
void
*
batch_normalization_7_variance
,
size_t
batch_normalization_7_variance_bytes
,
void
*
depthwise_conv2d_4_w
,
size_t
depthwise_conv2d_4_w_bytes
,
void
*
batch_normalization_8_gamma
,
size_t
batch_normalization_8_gamma_bytes
,
void
*
batch_normalization_8_beta
,
size_t
batch_normalization_8_beta_bytes
,
void
*
batch_normalization_8_mean
,
size_t
batch_normalization_8_mean_bytes
,
void
*
batch_normalization_8_variance
,
size_t
batch_normalization_8_variance_bytes
,
void
*
conv2d_5_w
,
size_t
conv2d_5_w_bytes
,
void
*
batch_normalization_9_gamma
,
size_t
batch_normalization_9_gamma_bytes
,
void
*
batch_normalization_9_beta
,
size_t
batch_normalization_9_beta_bytes
,
void
*
batch_normalization_9_mean
,
size_t
batch_normalization_9_mean_bytes
,
void
*
batch_normalization_9_variance
,
size_t
batch_normalization_9_variance_bytes
,
void
*
depthwise_conv2d_5_w
,
size_t
depthwise_conv2d_5_w_bytes
,
void
*
batch_normalization_10_gamma
,
size_t
batch_normalization_10_gamma_bytes
,
void
*
batch_normalization_10_beta
,
size_t
batch_normalization_10_beta_bytes
,
void
*
batch_normalization_10_mean
,
size_t
batch_normalization_10_mean_bytes
,
void
*
batch_normalization_10_variance
,
size_t
batch_normalization_10_variance_bytes
,
void
*
conv2d_6_w
,
size_t
conv2d_6_w_bytes
,
void
*
batch_normalization_11_gamma
,
size_t
batch_normalization_11_gamma_bytes
,
void
*
batch_normalization_11_beta
,
size_t
batch_normalization_11_beta_bytes
,
void
*
batch_normalization_11_mean
,
size_t
batch_normalization_11_mean_bytes
,
void
*
batch_normalization_11_variance
,
size_t
batch_normalization_11_variance_bytes
,
void
*
depthwise_conv2d_6_w
,
size_t
depthwise_conv2d_6_w_bytes
,
void
*
batch_normalization_12_gamma
,
size_t
batch_normalization_12_gamma_bytes
,
void
*
batch_normalization_12_beta
,
size_t
batch_normalization_12_beta_bytes
,
void
*
batch_normalization_12_mean
,
size_t
batch_normalization_12_mean_bytes
,
void
*
batch_normalization_12_variance
,
size_t
batch_normalization_12_variance_bytes
,
void
*
conv2d_7_w
,
size_t
conv2d_7_w_bytes
,
void
*
batch_normalization_13_gamma
,
size_t
batch_normalization_13_gamma_bytes
,
void
*
batch_normalization_13_beta
,
size_t
batch_normalization_13_beta_bytes
,
void
*
batch_normalization_13_mean
,
size_t
batch_normalization_13_mean_bytes
,
void
*
batch_normalization_13_variance
,
size_t
batch_normalization_13_variance_bytes
,
void
*
dense_1_w
,
size_t
dense_1_w_bytes
,
void
*
dense_1_b
,
size_t
dense_1_b_bytes
){
__visc__hint
(
visc
::
CPU_TARGET
);
__visc__attributes
(
68
,
input
,
conv2d_1_w
,
batch_normalization_1_gamma
,
batch_normalization_1_beta
,
batch_normalization_1_mean
,
batch_normalization_1_variance
,
depthwise_conv2d_1_w
,
batch_normalization_2_gamma
,
batch_normalization_2_beta
,
batch_normalization_2_mean
,
batch_normalization_2_variance
,
conv2d_2_w
,
batch_normalization_3_gamma
,
batch_normalization_3_beta
,
batch_normalization_3_mean
,
batch_normalization_3_variance
,
depthwise_conv2d_2_w
,
batch_normalization_4_gamma
,
batch_normalization_4_beta
,
batch_normalization_4_mean
,
batch_normalization_4_variance
,
conv2d_3_w
,
batch_normalization_5_gamma
,
batch_normalization_5_beta
,
batch_normalization_5_mean
,
batch_normalization_5_variance
,
depthwise_conv2d_3_w
,
batch_normalization_6_gamma
,
batch_normalization_6_beta
,
batch_normalization_6_mean
,
batch_normalization_6_variance
,
conv2d_4_w
,
batch_normalization_7_gamma
,
batch_normalization_7_beta
,
batch_normalization_7_mean
,
batch_normalization_7_variance
,
depthwise_conv2d_4_w
,
batch_normalization_8_gamma
,
batch_normalization_8_beta
,
batch_normalization_8_mean
,
batch_normalization_8_variance
,
conv2d_5_w
,
batch_normalization_9_gamma
,
batch_normalization_9_beta
,
batch_normalization_9_mean
,
batch_normalization_9_variance
,
depthwise_conv2d_5_w
,
batch_normalization_10_gamma
,
batch_normalization_10_beta
,
batch_normalization_10_mean
,
batch_normalization_10_variance
,
conv2d_6_w
,
batch_normalization_11_gamma
,
batch_normalization_11_beta
,
batch_normalization_11_mean
,
batch_normalization_11_variance
,
depthwise_conv2d_6_w
,
batch_normalization_12_gamma
,
batch_normalization_12_beta
,
batch_normalization_12_mean
,
batch_normalization_12_variance
,
conv2d_7_w
,
batch_normalization_13_gamma
,
batch_normalization_13_beta
,
batch_normalization_13_mean
,
batch_normalization_13_variance
,
dense_1_w
,
dense_1_b
,
0
);
void
*
var_0
=
__visc__createNodeND
(
0
,
var_0_node
);
__visc__bindIn
(
var_0
,
0
,
0
,
0
);
__visc__bindIn
(
var_0
,
1
,
1
,
0
);
__visc__bindIn
(
var_0
,
2
,
2
,
0
);
__visc__bindIn
(
var_0
,
3
,
3
,
0
);
void
*
var_1
=
__visc__createNodeND
(
0
,
var_1_node
);
__visc__edge
(
var_0
,
var_1
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_0
,
var_1
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_1
,
4
,
2
,
0
);
__visc__bindIn
(
var_1
,
5
,
3
,
0
);
__visc__bindIn
(
var_1
,
6
,
4
,
0
);
__visc__bindIn
(
var_1
,
7
,
5
,
0
);
__visc__bindIn
(
var_1
,
8
,
6
,
0
);
__visc__bindIn
(
var_1
,
9
,
7
,
0
);
__visc__bindIn
(
var_1
,
10
,
8
,
0
);
__visc__bindIn
(
var_1
,
11
,
9
,
0
);
void
*
var_2
=
__visc__createNodeND
(
0
,
var_2_node
);
__visc__edge
(
var_1
,
var_2
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_1
,
var_2
,
1
,
1
,
1
,
0
);
void
*
var_3
=
__visc__createNodeND
(
0
,
var_3_node
);
__visc__edge
(
var_2
,
var_3
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_2
,
var_3
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_3
,
12
,
2
,
0
);
__visc__bindIn
(
var_3
,
13
,
3
,
0
);
void
*
var_4
=
__visc__createNodeND
(
0
,
var_4_node
);
__visc__edge
(
var_3
,
var_4
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_3
,
var_4
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_4
,
14
,
2
,
0
);
__visc__bindIn
(
var_4
,
15
,
3
,
0
);
__visc__bindIn
(
var_4
,
16
,
4
,
0
);
__visc__bindIn
(
var_4
,
17
,
5
,
0
);
__visc__bindIn
(
var_4
,
18
,
6
,
0
);
__visc__bindIn
(
var_4
,
19
,
7
,
0
);
__visc__bindIn
(
var_4
,
20
,
8
,
0
);
__visc__bindIn
(
var_4
,
21
,
9
,
0
);
void
*
var_5
=
__visc__createNodeND
(
0
,
var_5_node
);
__visc__edge
(
var_4
,
var_5
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_4
,
var_5
,
1
,
1
,
1
,
0
);
void
*
var_6
=
__visc__createNodeND
(
0
,
var_6_node
);
__visc__edge
(
var_5
,
var_6
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_5
,
var_6
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_6
,
22
,
2
,
0
);
__visc__bindIn
(
var_6
,
23
,
3
,
0
);
void
*
var_7
=
__visc__createNodeND
(
0
,
var_7_node
);
__visc__edge
(
var_6
,
var_7
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_6
,
var_7
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_7
,
24
,
2
,
0
);
__visc__bindIn
(
var_7
,
25
,
3
,
0
);
__visc__bindIn
(
var_7
,
26
,
4
,
0
);
__visc__bindIn
(
var_7
,
27
,
5
,
0
);
__visc__bindIn
(
var_7
,
28
,
6
,
0
);
__visc__bindIn
(
var_7
,
29
,
7
,
0
);
__visc__bindIn
(
var_7
,
30
,
8
,
0
);
__visc__bindIn
(
var_7
,
31
,
9
,
0
);
void
*
var_8
=
__visc__createNodeND
(
0
,
var_8_node
);
__visc__edge
(
var_7
,
var_8
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_7
,
var_8
,
1
,
1
,
1
,
0
);
void
*
var_9
=
__visc__createNodeND
(
0
,
var_9_node
);
__visc__edge
(
var_8
,
var_9
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_8
,
var_9
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_9
,
32
,
2
,
0
);
__visc__bindIn
(
var_9
,
33
,
3
,
0
);
void
*
var_10
=
__visc__createNodeND
(
0
,
var_10_node
);
__visc__edge
(
var_9
,
var_10
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_9
,
var_10
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_10
,
34
,
2
,
0
);
__visc__bindIn
(
var_10
,
35
,
3
,
0
);
__visc__bindIn
(
var_10
,
36
,
4
,
0
);
__visc__bindIn
(
var_10
,
37
,
5
,
0
);
__visc__bindIn
(
var_10
,
38
,
6
,
0
);
__visc__bindIn
(
var_10
,
39
,
7
,
0
);
__visc__bindIn
(
var_10
,
40
,
8
,
0
);
__visc__bindIn
(
var_10
,
41
,
9
,
0
);
void
*
var_11
=
__visc__createNodeND
(
0
,
var_11_node
);
__visc__edge
(
var_10
,
var_11
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_10
,
var_11
,
1
,
1
,
1
,
0
);
void
*
var_12
=
__visc__createNodeND
(
0
,
var_12_node
);
__visc__edge
(
var_11
,
var_12
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_11
,
var_12
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_12
,
42
,
2
,
0
);
__visc__bindIn
(
var_12
,
43
,
3
,
0
);
void
*
var_13
=
__visc__createNodeND
(
0
,
var_13_node
);
__visc__edge
(
var_12
,
var_13
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_12
,
var_13
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_13
,
44
,
2
,
0
);
__visc__bindIn
(
var_13
,
45
,
3
,
0
);
__visc__bindIn
(
var_13
,
46
,
4
,
0
);
__visc__bindIn
(
var_13
,
47
,
5
,
0
);
__visc__bindIn
(
var_13
,
48
,
6
,
0
);
__visc__bindIn
(
var_13
,
49
,
7
,
0
);
__visc__bindIn
(
var_13
,
50
,
8
,
0
);
__visc__bindIn
(
var_13
,
51
,
9
,
0
);
void
*
var_14
=
__visc__createNodeND
(
0
,
var_14_node
);
__visc__edge
(
var_13
,
var_14
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_13
,
var_14
,
1
,
1
,
1
,
0
);
void
*
var_15
=
__visc__createNodeND
(
0
,
var_15_node
);
__visc__edge
(
var_14
,
var_15
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_14
,
var_15
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_15
,
52
,
2
,
0
);
__visc__bindIn
(
var_15
,
53
,
3
,
0
);
void
*
var_16
=
__visc__createNodeND
(
0
,
var_16_node
);
__visc__edge
(
var_15
,
var_16
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_15
,
var_16
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_16
,
54
,
2
,
0
);
__visc__bindIn
(
var_16
,
55
,
3
,
0
);
__visc__bindIn
(
var_16
,
56
,
4
,
0
);
__visc__bindIn
(
var_16
,
57
,
5
,
0
);
__visc__bindIn
(
var_16
,
58
,
6
,
0
);
__visc__bindIn
(
var_16
,
59
,
7
,
0
);
__visc__bindIn
(
var_16
,
60
,
8
,
0
);
__visc__bindIn
(
var_16
,
61
,
9
,
0
);
void
*
var_17
=
__visc__createNodeND
(
0
,
var_17_node
);
__visc__edge
(
var_16
,
var_17
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_16
,
var_17
,
1
,
1
,
1
,
0
);
void
*
var_18
=
__visc__createNodeND
(
0
,
var_18_node
);
__visc__edge
(
var_17
,
var_18
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_17
,
var_18
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_18
,
62
,
2
,
0
);
__visc__bindIn
(
var_18
,
63
,
3
,
0
);
void
*
var_19
=
__visc__createNodeND
(
0
,
var_19_node
);
__visc__edge
(
var_18
,
var_19
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_18
,
var_19
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_19
,
64
,
2
,
0
);
__visc__bindIn
(
var_19
,
65
,
3
,
0
);
__visc__bindIn
(
var_19
,
66
,
4
,
0
);
__visc__bindIn
(
var_19
,
67
,
5
,
0
);
__visc__bindIn
(
var_19
,
68
,
6
,
0
);
__visc__bindIn
(
var_19
,
69
,
7
,
0
);
__visc__bindIn
(
var_19
,
70
,
8
,
0
);
__visc__bindIn
(
var_19
,
71
,
9
,
0
);
void
*
var_20
=
__visc__createNodeND
(
0
,
var_20_node
);
__visc__edge
(
var_19
,
var_20
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_19
,
var_20
,
1
,
1
,
1
,
0
);
void
*
var_21
=
__visc__createNodeND
(
0
,
var_21_node
);
__visc__edge
(
var_20
,
var_21
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_20
,
var_21
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_21
,
72
,
2
,
0
);
__visc__bindIn
(
var_21
,
73
,
3
,
0
);
void
*
var_22
=
__visc__createNodeND
(
0
,
var_22_node
);
__visc__edge
(
var_21
,
var_22
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_21
,
var_22
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_22
,
74
,
2
,
0
);
__visc__bindIn
(
var_22
,
75
,
3
,
0
);
__visc__bindIn
(
var_22
,
76
,
4
,
0
);
__visc__bindIn
(
var_22
,
77
,
5
,
0
);
__visc__bindIn
(
var_22
,
78
,
6
,
0
);
__visc__bindIn
(
var_22
,
79
,
7
,
0
);
__visc__bindIn
(
var_22
,
80
,
8
,
0
);
__visc__bindIn
(
var_22
,
81
,
9
,
0
);
void
*
var_23
=
__visc__createNodeND
(
0
,
var_23_node
);
__visc__edge
(
var_22
,
var_23
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_22
,
var_23
,
1
,
1
,
1
,
0
);
void
*
var_24
=
__visc__createNodeND
(
0
,
var_24_node
);
__visc__edge
(
var_23
,
var_24
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_23
,
var_24
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_24
,
82
,
2
,
0
);
__visc__bindIn
(
var_24
,
83
,
3
,
0
);
void
*
var_25
=
__visc__createNodeND
(
0
,
var_25_node
);
__visc__edge
(
var_24
,
var_25
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_24
,
var_25
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_25
,
84
,
2
,
0
);
__visc__bindIn
(
var_25
,
85
,
3
,
0
);
__visc__bindIn
(
var_25
,
86
,
4
,
0
);
__visc__bindIn
(
var_25
,
87
,
5
,
0
);
__visc__bindIn
(
var_25
,
88
,
6
,
0
);
__visc__bindIn
(
var_25
,
89
,
7
,
0
);
__visc__bindIn
(
var_25
,
90
,
8
,
0
);
__visc__bindIn
(
var_25
,
91
,
9
,
0
);
void
*
var_26
=
__visc__createNodeND
(
0
,
var_26_node
);
__visc__edge
(
var_25
,
var_26
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_25
,
var_26
,
1
,
1
,
1
,
0
);
void
*
var_27
=
__visc__createNodeND
(
0
,
var_27_node
);
__visc__edge
(
var_26
,
var_27
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_26
,
var_27
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_27
,
92
,
2
,
0
);
__visc__bindIn
(
var_27
,
93
,
3
,
0
);
void
*
var_28
=
__visc__createNodeND
(
0
,
var_28_node
);
__visc__edge
(
var_27
,
var_28
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_27
,
var_28
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_28
,
94
,
2
,
0
);
__visc__bindIn
(
var_28
,
95
,
3
,
0
);
__visc__bindIn
(
var_28
,
96
,
4
,
0
);
__visc__bindIn
(
var_28
,
97
,
5
,
0
);
__visc__bindIn
(
var_28
,
98
,
6
,
0
);
__visc__bindIn
(
var_28
,
99
,
7
,
0
);
__visc__bindIn
(
var_28
,
100
,
8
,
0
);
__visc__bindIn
(
var_28
,
101
,
9
,
0
);
void
*
var_29
=
__visc__createNodeND
(
0
,
var_29_node
);
__visc__edge
(
var_28
,
var_29
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_28
,
var_29
,
1
,
1
,
1
,
0
);
void
*
var_30
=
__visc__createNodeND
(
0
,
var_30_node
);
__visc__edge
(
var_29
,
var_30
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_29
,
var_30
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_30
,
102
,
2
,
0
);
__visc__bindIn
(
var_30
,
103
,
3
,
0
);
void
*
var_31
=
__visc__createNodeND
(
0
,
var_31_node
);
__visc__edge
(
var_30
,
var_31
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_30
,
var_31
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_31
,
104
,
2
,
0
);
__visc__bindIn
(
var_31
,
105
,
3
,
0
);
__visc__bindIn
(
var_31
,
106
,
4
,
0
);
__visc__bindIn
(
var_31
,
107
,
5
,
0
);
__visc__bindIn
(
var_31
,
108
,
6
,
0
);
__visc__bindIn
(
var_31
,
109
,
7
,
0
);
__visc__bindIn
(
var_31
,
110
,
8
,
0
);
__visc__bindIn
(
var_31
,
111
,
9
,
0
);
void
*
var_32
=
__visc__createNodeND
(
0
,
var_32_node
);
__visc__edge
(
var_31
,
var_32
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_31
,
var_32
,
1
,
1
,
1
,
0
);
void
*
var_33
=
__visc__createNodeND
(
0
,
var_33_node
);
__visc__edge
(
var_32
,
var_33
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_32
,
var_33
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_33
,
112
,
2
,
0
);
__visc__bindIn
(
var_33
,
113
,
3
,
0
);
void
*
var_34
=
__visc__createNodeND
(
0
,
var_34_node
);
__visc__edge
(
var_33
,
var_34
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_33
,
var_34
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_34
,
114
,
2
,
0
);
__visc__bindIn
(
var_34
,
115
,
3
,
0
);
__visc__bindIn
(
var_34
,
116
,
4
,
0
);
__visc__bindIn
(
var_34
,
117
,
5
,
0
);
__visc__bindIn
(
var_34
,
118
,
6
,
0
);
__visc__bindIn
(
var_34
,
119
,
7
,
0
);
__visc__bindIn
(
var_34
,
120
,
8
,
0
);
__visc__bindIn
(
var_34
,
121
,
9
,
0
);
void
*
var_35
=
__visc__createNodeND
(
0
,
var_35_node
);
__visc__edge
(
var_34
,
var_35
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_34
,
var_35
,
1
,
1
,
1
,
0
);
void
*
var_36
=
__visc__createNodeND
(
0
,
var_36_node
);
__visc__edge
(
var_35
,
var_36
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_35
,
var_36
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_36
,
122
,
2
,
0
);
__visc__bindIn
(
var_36
,
123
,
3
,
0
);
void
*
var_37
=
__visc__createNodeND
(
0
,
var_37_node
);
__visc__edge
(
var_36
,
var_37
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_36
,
var_37
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_37
,
124
,
2
,
0
);
__visc__bindIn
(
var_37
,
125
,
3
,
0
);
__visc__bindIn
(
var_37
,
126
,
4
,
0
);
__visc__bindIn
(
var_37
,
127
,
5
,
0
);
__visc__bindIn
(
var_37
,
128
,
6
,
0
);
__visc__bindIn
(
var_37
,
129
,
7
,
0
);
__visc__bindIn
(
var_37
,
130
,
8
,
0
);
__visc__bindIn
(
var_37
,
131
,
9
,
0
);
void
*
var_38
=
__visc__createNodeND
(
0
,
var_38_node
);
__visc__edge
(
var_37
,
var_38
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_37
,
var_38
,
1
,
1
,
1
,
0
);
void
*
var_39
=
__visc__createNodeND
(
0
,
var_39_node
);
__visc__edge
(
var_38
,
var_39
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_38
,
var_39
,
1
,
1
,
1
,
0
);
void
*
var_40
=
__visc__createNodeND
(
0
,
var_40_node
);
__visc__edge
(
var_39
,
var_40
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_39
,
var_40
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_40
,
132
,
2
,
0
);
__visc__bindIn
(
var_40
,
133
,
3
,
0
);
void
*
var_41
=
__visc__createNodeND
(
0
,
var_41_node
);
__visc__edge
(
var_40
,
var_41
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_40
,
var_41
,
1
,
1
,
1
,
0
);
__visc__bindIn
(
var_41
,
134
,
2
,
0
);
__visc__bindIn
(
var_41
,
135
,
3
,
0
);
void
*
var_42
=
__visc__createNodeND
(
0
,
var_42_node
);
__visc__edge
(
var_41
,
var_42
,
1
,
0
,
0
,
0
);
__visc__edge
(
var_41
,
var_42
,
1
,
1
,
1
,
0
);
__visc__bindOut
(
var_42
,
0
,
0
,
0
);
__visc__bindOut
(
var_42
,
1
,
1
,
0
);
}
struct
ret_t
{
void
*
tensor
;
size_t
bytes
;
};
typedef
struct
__attribute__
((
__packed__
))
{
void
*
input
;
size_t
input_bytes
;
void
*
conv2d_1_w
;
size_t
conv2d_1_w_bytes
;
void
*
batch_normalization_1_gamma
;
size_t
batch_normalization_1_gamma_bytes
;
void
*
batch_normalization_1_beta
;
size_t
batch_normalization_1_beta_bytes
;
void
*
batch_normalization_1_mean
;
size_t
batch_normalization_1_mean_bytes
;
void
*
batch_normalization_1_variance
;
size_t
batch_normalization_1_variance_bytes
;
void
*
depthwise_conv2d_1_w
;
size_t
depthwise_conv2d_1_w_bytes
;
void
*
batch_normalization_2_gamma
;
size_t
batch_normalization_2_gamma_bytes
;
void
*
batch_normalization_2_beta
;
size_t
batch_normalization_2_beta_bytes
;
void
*
batch_normalization_2_mean
;
size_t
batch_normalization_2_mean_bytes
;
void
*
batch_normalization_2_variance
;
size_t
batch_normalization_2_variance_bytes
;
void
*
conv2d_2_w
;
size_t
conv2d_2_w_bytes
;
void
*
batch_normalization_3_gamma
;
size_t
batch_normalization_3_gamma_bytes
;
void
*
batch_normalization_3_beta
;
size_t
batch_normalization_3_beta_bytes
;
void
*
batch_normalization_3_mean
;
size_t
batch_normalization_3_mean_bytes
;
void
*
batch_normalization_3_variance
;
size_t
batch_normalization_3_variance_bytes
;
void
*
depthwise_conv2d_2_w
;
size_t
depthwise_conv2d_2_w_bytes
;
void
*
batch_normalization_4_gamma
;
size_t
batch_normalization_4_gamma_bytes
;
void
*
batch_normalization_4_beta
;
size_t
batch_normalization_4_beta_bytes
;
void
*
batch_normalization_4_mean
;
size_t
batch_normalization_4_mean_bytes
;
void
*
batch_normalization_4_variance
;
size_t
batch_normalization_4_variance_bytes
;
void
*
conv2d_3_w
;
size_t
conv2d_3_w_bytes
;
void
*
batch_normalization_5_gamma
;
size_t
batch_normalization_5_gamma_bytes
;
void
*
batch_normalization_5_beta
;
size_t
batch_normalization_5_beta_bytes
;
void
*
batch_normalization_5_mean
;
size_t
batch_normalization_5_mean_bytes
;
void
*
batch_normalization_5_variance
;
size_t
batch_normalization_5_variance_bytes
;
void
*
depthwise_conv2d_3_w
;
size_t
depthwise_conv2d_3_w_bytes
;
void
*
batch_normalization_6_gamma
;
size_t
batch_normalization_6_gamma_bytes
;
void
*
batch_normalization_6_beta
;
size_t
batch_normalization_6_beta_bytes
;
void
*
batch_normalization_6_mean
;
size_t
batch_normalization_6_mean_bytes
;
void
*
batch_normalization_6_variance
;
size_t
batch_normalization_6_variance_bytes
;
void
*
conv2d_4_w
;
size_t
conv2d_4_w_bytes
;
void
*
batch_normalization_7_gamma
;
size_t
batch_normalization_7_gamma_bytes
;
void
*
batch_normalization_7_beta
;
size_t
batch_normalization_7_beta_bytes
;
void
*
batch_normalization_7_mean
;
size_t
batch_normalization_7_mean_bytes
;
void
*
batch_normalization_7_variance
;
size_t
batch_normalization_7_variance_bytes
;
void
*
depthwise_conv2d_4_w
;
size_t
depthwise_conv2d_4_w_bytes
;
void
*
batch_normalization_8_gamma
;
size_t
batch_normalization_8_gamma_bytes
;
void
*
batch_normalization_8_beta
;
size_t
batch_normalization_8_beta_bytes
;
void
*
batch_normalization_8_mean
;
size_t
batch_normalization_8_mean_bytes
;
void
*
batch_normalization_8_variance
;
size_t
batch_normalization_8_variance_bytes
;
void
*
conv2d_5_w
;
size_t
conv2d_5_w_bytes
;
void
*
batch_normalization_9_gamma
;
size_t
batch_normalization_9_gamma_bytes
;
void
*
batch_normalization_9_beta
;
size_t
batch_normalization_9_beta_bytes
;
void
*
batch_normalization_9_mean
;
size_t
batch_normalization_9_mean_bytes
;
void
*
batch_normalization_9_variance
;
size_t
batch_normalization_9_variance_bytes
;
void
*
depthwise_conv2d_5_w
;
size_t
depthwise_conv2d_5_w_bytes
;
void
*
batch_normalization_10_gamma
;
size_t
batch_normalization_10_gamma_bytes
;
void
*
batch_normalization_10_beta
;
size_t
batch_normalization_10_beta_bytes
;
void
*
batch_normalization_10_mean
;
size_t
batch_normalization_10_mean_bytes
;
void
*
batch_normalization_10_variance
;
size_t
batch_normalization_10_variance_bytes
;
void
*
conv2d_6_w
;
size_t
conv2d_6_w_bytes
;
void
*
batch_normalization_11_gamma
;
size_t
batch_normalization_11_gamma_bytes
;
void
*
batch_normalization_11_beta
;
size_t
batch_normalization_11_beta_bytes
;
void
*
batch_normalization_11_mean
;
size_t
batch_normalization_11_mean_bytes
;
void
*
batch_normalization_11_variance
;
size_t
batch_normalization_11_variance_bytes
;
void
*
depthwise_conv2d_6_w
;
size_t
depthwise_conv2d_6_w_bytes
;
void
*
batch_normalization_12_gamma
;
size_t
batch_normalization_12_gamma_bytes
;
void
*
batch_normalization_12_beta
;
size_t
batch_normalization_12_beta_bytes
;
void
*
batch_normalization_12_mean
;
size_t
batch_normalization_12_mean_bytes
;
void
*
batch_normalization_12_variance
;
size_t
batch_normalization_12_variance_bytes
;
void
*
conv2d_7_w
;
size_t
conv2d_7_w_bytes
;
void
*
batch_normalization_13_gamma
;
size_t
batch_normalization_13_gamma_bytes
;
void
*
batch_normalization_13_beta
;
size_t
batch_normalization_13_beta_bytes
;
void
*
batch_normalization_13_mean
;
size_t
batch_normalization_13_mean_bytes
;
void
*
batch_normalization_13_variance
;
size_t
batch_normalization_13_variance_bytes
;
void
*
dense_1_w
;
size_t
dense_1_w_bytes
;
void
*
dense_1_b
;
size_t
dense_1_b_bytes
;
struct
ret_t
r
;
}
RootIn
;
int
main
(){
std
::
string
dir_prefix
=
std
::
string
(
"../../../../../../projects/hpvm-tensor-rt/model_params/mobilenet_shallow/"
);
std
::
string
input_path
=
dir_prefix
+
std
::
string
(
"input.bin"
);
std
::
string
labels_path
=
dir_prefix
+
std
::
string
(
"labels.bin"
);
std
::
string
conv2d_1_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_1_w.bin"
);
void
*
conv2d_1_w
=
readTrainedWeights
(
conv2d_1_w_path
.
c_str
(),
0
,
32
,
3
,
3
,
3
);
std
::
string
batch_normalization_1_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_1_gamma.bin"
);
void
*
batch_normalization_1_gamma
=
readTrainedWeights
(
batch_normalization_1_gamma_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
batch_normalization_1_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_1_beta.bin"
);
void
*
batch_normalization_1_beta
=
readTrainedWeights
(
batch_normalization_1_beta_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
batch_normalization_1_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_1_mean.bin"
);
void
*
batch_normalization_1_mean
=
readTrainedWeights
(
batch_normalization_1_mean_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
batch_normalization_1_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_1_variance.bin"
);
void
*
batch_normalization_1_variance
=
readTrainedWeights
(
batch_normalization_1_variance_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
depthwise_conv2d_1_w_path
=
dir_prefix
+
std
::
string
(
"depthwise_conv2d_1_w.bin"
);
void
*
depthwise_conv2d_1_w
=
readTrainedWeights
(
depthwise_conv2d_1_w_path
.
c_str
(),
0
,
32
,
1
,
3
,
3
);
std
::
string
batch_normalization_2_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_2_gamma.bin"
);
void
*
batch_normalization_2_gamma
=
readTrainedWeights
(
batch_normalization_2_gamma_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
batch_normalization_2_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_2_beta.bin"
);
void
*
batch_normalization_2_beta
=
readTrainedWeights
(
batch_normalization_2_beta_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
batch_normalization_2_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_2_mean.bin"
);
void
*
batch_normalization_2_mean
=
readTrainedWeights
(
batch_normalization_2_mean_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
batch_normalization_2_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_2_variance.bin"
);
void
*
batch_normalization_2_variance
=
readTrainedWeights
(
batch_normalization_2_variance_path
.
c_str
(),
0
,
1
,
32
,
1
,
1
);
std
::
string
conv2d_2_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_2_w.bin"
);
void
*
conv2d_2_w
=
readTrainedWeights
(
conv2d_2_w_path
.
c_str
(),
0
,
64
,
32
,
1
,
1
);
std
::
string
batch_normalization_3_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_3_gamma.bin"
);
void
*
batch_normalization_3_gamma
=
readTrainedWeights
(
batch_normalization_3_gamma_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
batch_normalization_3_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_3_beta.bin"
);
void
*
batch_normalization_3_beta
=
readTrainedWeights
(
batch_normalization_3_beta_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
batch_normalization_3_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_3_mean.bin"
);
void
*
batch_normalization_3_mean
=
readTrainedWeights
(
batch_normalization_3_mean_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
batch_normalization_3_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_3_variance.bin"
);
void
*
batch_normalization_3_variance
=
readTrainedWeights
(
batch_normalization_3_variance_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
depthwise_conv2d_2_w_path
=
dir_prefix
+
std
::
string
(
"depthwise_conv2d_2_w.bin"
);
void
*
depthwise_conv2d_2_w
=
readTrainedWeights
(
depthwise_conv2d_2_w_path
.
c_str
(),
0
,
64
,
1
,
3
,
3
);
std
::
string
batch_normalization_4_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_4_gamma.bin"
);
void
*
batch_normalization_4_gamma
=
readTrainedWeights
(
batch_normalization_4_gamma_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
batch_normalization_4_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_4_beta.bin"
);
void
*
batch_normalization_4_beta
=
readTrainedWeights
(
batch_normalization_4_beta_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
batch_normalization_4_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_4_mean.bin"
);
void
*
batch_normalization_4_mean
=
readTrainedWeights
(
batch_normalization_4_mean_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
batch_normalization_4_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_4_variance.bin"
);
void
*
batch_normalization_4_variance
=
readTrainedWeights
(
batch_normalization_4_variance_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
conv2d_3_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_3_w.bin"
);
void
*
conv2d_3_w
=
readTrainedWeights
(
conv2d_3_w_path
.
c_str
(),
0
,
128
,
64
,
1
,
1
);
std
::
string
batch_normalization_5_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_5_gamma.bin"
);
void
*
batch_normalization_5_gamma
=
readTrainedWeights
(
batch_normalization_5_gamma_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_5_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_5_beta.bin"
);
void
*
batch_normalization_5_beta
=
readTrainedWeights
(
batch_normalization_5_beta_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_5_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_5_mean.bin"
);
void
*
batch_normalization_5_mean
=
readTrainedWeights
(
batch_normalization_5_mean_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_5_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_5_variance.bin"
);
void
*
batch_normalization_5_variance
=
readTrainedWeights
(
batch_normalization_5_variance_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
depthwise_conv2d_3_w_path
=
dir_prefix
+
std
::
string
(
"depthwise_conv2d_3_w.bin"
);
void
*
depthwise_conv2d_3_w
=
readTrainedWeights
(
depthwise_conv2d_3_w_path
.
c_str
(),
0
,
128
,
1
,
3
,
3
);
std
::
string
batch_normalization_6_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_6_gamma.bin"
);
void
*
batch_normalization_6_gamma
=
readTrainedWeights
(
batch_normalization_6_gamma_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_6_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_6_beta.bin"
);
void
*
batch_normalization_6_beta
=
readTrainedWeights
(
batch_normalization_6_beta_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_6_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_6_mean.bin"
);
void
*
batch_normalization_6_mean
=
readTrainedWeights
(
batch_normalization_6_mean_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_6_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_6_variance.bin"
);
void
*
batch_normalization_6_variance
=
readTrainedWeights
(
batch_normalization_6_variance_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
conv2d_4_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_4_w.bin"
);
void
*
conv2d_4_w
=
readTrainedWeights
(
conv2d_4_w_path
.
c_str
(),
0
,
128
,
128
,
1
,
1
);
std
::
string
batch_normalization_7_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_7_gamma.bin"
);
void
*
batch_normalization_7_gamma
=
readTrainedWeights
(
batch_normalization_7_gamma_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_7_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_7_beta.bin"
);
void
*
batch_normalization_7_beta
=
readTrainedWeights
(
batch_normalization_7_beta_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_7_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_7_mean.bin"
);
void
*
batch_normalization_7_mean
=
readTrainedWeights
(
batch_normalization_7_mean_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_7_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_7_variance.bin"
);
void
*
batch_normalization_7_variance
=
readTrainedWeights
(
batch_normalization_7_variance_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
depthwise_conv2d_4_w_path
=
dir_prefix
+
std
::
string
(
"depthwise_conv2d_4_w.bin"
);
void
*
depthwise_conv2d_4_w
=
readTrainedWeights
(
depthwise_conv2d_4_w_path
.
c_str
(),
0
,
128
,
1
,
3
,
3
);
std
::
string
batch_normalization_8_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_8_gamma.bin"
);
void
*
batch_normalization_8_gamma
=
readTrainedWeights
(
batch_normalization_8_gamma_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_8_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_8_beta.bin"
);
void
*
batch_normalization_8_beta
=
readTrainedWeights
(
batch_normalization_8_beta_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_8_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_8_mean.bin"
);
void
*
batch_normalization_8_mean
=
readTrainedWeights
(
batch_normalization_8_mean_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
batch_normalization_8_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_8_variance.bin"
);
void
*
batch_normalization_8_variance
=
readTrainedWeights
(
batch_normalization_8_variance_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
conv2d_5_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_5_w.bin"
);
void
*
conv2d_5_w
=
readTrainedWeights
(
conv2d_5_w_path
.
c_str
(),
0
,
256
,
128
,
1
,
1
);
std
::
string
batch_normalization_9_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_9_gamma.bin"
);
void
*
batch_normalization_9_gamma
=
readTrainedWeights
(
batch_normalization_9_gamma_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_9_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_9_beta.bin"
);
void
*
batch_normalization_9_beta
=
readTrainedWeights
(
batch_normalization_9_beta_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_9_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_9_mean.bin"
);
void
*
batch_normalization_9_mean
=
readTrainedWeights
(
batch_normalization_9_mean_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_9_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_9_variance.bin"
);
void
*
batch_normalization_9_variance
=
readTrainedWeights
(
batch_normalization_9_variance_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
depthwise_conv2d_5_w_path
=
dir_prefix
+
std
::
string
(
"depthwise_conv2d_5_w.bin"
);
void
*
depthwise_conv2d_5_w
=
readTrainedWeights
(
depthwise_conv2d_5_w_path
.
c_str
(),
0
,
256
,
1
,
3
,
3
);
std
::
string
batch_normalization_10_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_10_gamma.bin"
);
void
*
batch_normalization_10_gamma
=
readTrainedWeights
(
batch_normalization_10_gamma_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_10_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_10_beta.bin"
);
void
*
batch_normalization_10_beta
=
readTrainedWeights
(
batch_normalization_10_beta_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_10_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_10_mean.bin"
);
void
*
batch_normalization_10_mean
=
readTrainedWeights
(
batch_normalization_10_mean_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_10_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_10_variance.bin"
);
void
*
batch_normalization_10_variance
=
readTrainedWeights
(
batch_normalization_10_variance_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
conv2d_6_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_6_w.bin"
);
void
*
conv2d_6_w
=
readTrainedWeights
(
conv2d_6_w_path
.
c_str
(),
0
,
256
,
256
,
1
,
1
);
std
::
string
batch_normalization_11_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_11_gamma.bin"
);
void
*
batch_normalization_11_gamma
=
readTrainedWeights
(
batch_normalization_11_gamma_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_11_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_11_beta.bin"
);
void
*
batch_normalization_11_beta
=
readTrainedWeights
(
batch_normalization_11_beta_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_11_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_11_mean.bin"
);
void
*
batch_normalization_11_mean
=
readTrainedWeights
(
batch_normalization_11_mean_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_11_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_11_variance.bin"
);
void
*
batch_normalization_11_variance
=
readTrainedWeights
(
batch_normalization_11_variance_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
depthwise_conv2d_6_w_path
=
dir_prefix
+
std
::
string
(
"depthwise_conv2d_6_w.bin"
);
void
*
depthwise_conv2d_6_w
=
readTrainedWeights
(
depthwise_conv2d_6_w_path
.
c_str
(),
0
,
256
,
1
,
3
,
3
);
std
::
string
batch_normalization_12_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_12_gamma.bin"
);
void
*
batch_normalization_12_gamma
=
readTrainedWeights
(
batch_normalization_12_gamma_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_12_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_12_beta.bin"
);
void
*
batch_normalization_12_beta
=
readTrainedWeights
(
batch_normalization_12_beta_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_12_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_12_mean.bin"
);
void
*
batch_normalization_12_mean
=
readTrainedWeights
(
batch_normalization_12_mean_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
batch_normalization_12_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_12_variance.bin"
);
void
*
batch_normalization_12_variance
=
readTrainedWeights
(
batch_normalization_12_variance_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
conv2d_7_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_7_w.bin"
);
void
*
conv2d_7_w
=
readTrainedWeights
(
conv2d_7_w_path
.
c_str
(),
0
,
512
,
256
,
1
,
1
);
std
::
string
batch_normalization_13_gamma_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_13_gamma.bin"
);
void
*
batch_normalization_13_gamma
=
readTrainedWeights
(
batch_normalization_13_gamma_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
batch_normalization_13_beta_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_13_beta.bin"
);
void
*
batch_normalization_13_beta
=
readTrainedWeights
(
batch_normalization_13_beta_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
batch_normalization_13_mean_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_13_mean.bin"
);
void
*
batch_normalization_13_mean
=
readTrainedWeights
(
batch_normalization_13_mean_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
batch_normalization_13_variance_path
=
dir_prefix
+
std
::
string
(
"batch_normalization_13_variance.bin"
);
void
*
batch_normalization_13_variance
=
readTrainedWeights
(
batch_normalization_13_variance_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
dense_1_w_path
=
dir_prefix
+
std
::
string
(
"dense_1_w.bin"
);
void
*
dense_1_w
=
readTrainedWeights
(
dense_1_w_path
.
c_str
(),
0
,
1
,
1
,
2048
,
10
);
std
::
string
dense_1_b_path
=
dir_prefix
+
std
::
string
(
"dense_1_b.bin"
);
void
*
dense_1_b
=
readTrainedWeights
(
dense_1_b_path
.
c_str
(),
0
,
1
,
10
,
1
,
1
);
void
*
input
=
readTrainedWeights
(
input_path
.
c_str
(),
0
,
5000
,
3
,
32
,
32
);
uint8_t
*
labels
=
readLabels
(
labels_path
.
c_str
(),
5000
);
__visc__init
();
RootIn
*
args
=
static_cast
<
RootIn
*>
(
malloc
(
sizeof
(
RootIn
)));
args
->
input
=
input
;
args
->
input_bytes
=
0
;
args
->
conv2d_1_w
=
conv2d_1_w
;
args
->
conv2d_1_w_bytes
=
0
;
args
->
batch_normalization_1_gamma
=
batch_normalization_1_gamma
;
args
->
batch_normalization_1_gamma_bytes
=
0
;
args
->
batch_normalization_1_beta
=
batch_normalization_1_beta
;
args
->
batch_normalization_1_beta_bytes
=
0
;
args
->
batch_normalization_1_mean
=
batch_normalization_1_mean
;
args
->
batch_normalization_1_mean_bytes
=
0
;
args
->
batch_normalization_1_variance
=
batch_normalization_1_variance
;
args
->
batch_normalization_1_variance_bytes
=
0
;
args
->
depthwise_conv2d_1_w
=
depthwise_conv2d_1_w
;
args
->
depthwise_conv2d_1_w_bytes
=
0
;
args
->
batch_normalization_2_gamma
=
batch_normalization_2_gamma
;
args
->
batch_normalization_2_gamma_bytes
=
0
;
args
->
batch_normalization_2_beta
=
batch_normalization_2_beta
;
args
->
batch_normalization_2_beta_bytes
=
0
;
args
->
batch_normalization_2_mean
=
batch_normalization_2_mean
;
args
->
batch_normalization_2_mean_bytes
=
0
;
args
->
batch_normalization_2_variance
=
batch_normalization_2_variance
;
args
->
batch_normalization_2_variance_bytes
=
0
;
args
->
conv2d_2_w
=
conv2d_2_w
;
args
->
conv2d_2_w_bytes
=
0
;
args
->
batch_normalization_3_gamma
=
batch_normalization_3_gamma
;
args
->
batch_normalization_3_gamma_bytes
=
0
;
args
->
batch_normalization_3_beta
=
batch_normalization_3_beta
;
args
->
batch_normalization_3_beta_bytes
=
0
;
args
->
batch_normalization_3_mean
=
batch_normalization_3_mean
;
args
->
batch_normalization_3_mean_bytes
=
0
;
args
->
batch_normalization_3_variance
=
batch_normalization_3_variance
;
args
->
batch_normalization_3_variance_bytes
=
0
;
args
->
depthwise_conv2d_2_w
=
depthwise_conv2d_2_w
;
args
->
depthwise_conv2d_2_w_bytes
=
0
;
args
->
batch_normalization_4_gamma
=
batch_normalization_4_gamma
;
args
->
batch_normalization_4_gamma_bytes
=
0
;
args
->
batch_normalization_4_beta
=
batch_normalization_4_beta
;
args
->
batch_normalization_4_beta_bytes
=
0
;
args
->
batch_normalization_4_mean
=
batch_normalization_4_mean
;
args
->
batch_normalization_4_mean_bytes
=
0
;
args
->
batch_normalization_4_variance
=
batch_normalization_4_variance
;
args
->
batch_normalization_4_variance_bytes
=
0
;
args
->
conv2d_3_w
=
conv2d_3_w
;
args
->
conv2d_3_w_bytes
=
0
;
args
->
batch_normalization_5_gamma
=
batch_normalization_5_gamma
;
args
->
batch_normalization_5_gamma_bytes
=
0
;
args
->
batch_normalization_5_beta
=
batch_normalization_5_beta
;
args
->
batch_normalization_5_beta_bytes
=
0
;
args
->
batch_normalization_5_mean
=
batch_normalization_5_mean
;
args
->
batch_normalization_5_mean_bytes
=
0
;
args
->
batch_normalization_5_variance
=
batch_normalization_5_variance
;
args
->
batch_normalization_5_variance_bytes
=
0
;
args
->
depthwise_conv2d_3_w
=
depthwise_conv2d_3_w
;
args
->
depthwise_conv2d_3_w_bytes
=
0
;
args
->
batch_normalization_6_gamma
=
batch_normalization_6_gamma
;
args
->
batch_normalization_6_gamma_bytes
=
0
;
args
->
batch_normalization_6_beta
=
batch_normalization_6_beta
;
args
->
batch_normalization_6_beta_bytes
=
0
;
args
->
batch_normalization_6_mean
=
batch_normalization_6_mean
;
args
->
batch_normalization_6_mean_bytes
=
0
;
args
->
batch_normalization_6_variance
=
batch_normalization_6_variance
;
args
->
batch_normalization_6_variance_bytes
=
0
;
args
->
conv2d_4_w
=
conv2d_4_w
;
args
->
conv2d_4_w_bytes
=
0
;
args
->
batch_normalization_7_gamma
=
batch_normalization_7_gamma
;
args
->
batch_normalization_7_gamma_bytes
=
0
;
args
->
batch_normalization_7_beta
=
batch_normalization_7_beta
;
args
->
batch_normalization_7_beta_bytes
=
0
;
args
->
batch_normalization_7_mean
=
batch_normalization_7_mean
;
args
->
batch_normalization_7_mean_bytes
=
0
;
args
->
batch_normalization_7_variance
=
batch_normalization_7_variance
;
args
->
batch_normalization_7_variance_bytes
=
0
;
args
->
depthwise_conv2d_4_w
=
depthwise_conv2d_4_w
;
args
->
depthwise_conv2d_4_w_bytes
=
0
;
args
->
batch_normalization_8_gamma
=
batch_normalization_8_gamma
;
args
->
batch_normalization_8_gamma_bytes
=
0
;
args
->
batch_normalization_8_beta
=
batch_normalization_8_beta
;
args
->
batch_normalization_8_beta_bytes
=
0
;
args
->
batch_normalization_8_mean
=
batch_normalization_8_mean
;
args
->
batch_normalization_8_mean_bytes
=
0
;
args
->
batch_normalization_8_variance
=
batch_normalization_8_variance
;
args
->
batch_normalization_8_variance_bytes
=
0
;
args
->
conv2d_5_w
=
conv2d_5_w
;
args
->
conv2d_5_w_bytes
=
0
;
args
->
batch_normalization_9_gamma
=
batch_normalization_9_gamma
;
args
->
batch_normalization_9_gamma_bytes
=
0
;
args
->
batch_normalization_9_beta
=
batch_normalization_9_beta
;
args
->
batch_normalization_9_beta_bytes
=
0
;
args
->
batch_normalization_9_mean
=
batch_normalization_9_mean
;
args
->
batch_normalization_9_mean_bytes
=
0
;
args
->
batch_normalization_9_variance
=
batch_normalization_9_variance
;
args
->
batch_normalization_9_variance_bytes
=
0
;
args
->
depthwise_conv2d_5_w
=
depthwise_conv2d_5_w
;
args
->
depthwise_conv2d_5_w_bytes
=
0
;
args
->
batch_normalization_10_gamma
=
batch_normalization_10_gamma
;
args
->
batch_normalization_10_gamma_bytes
=
0
;
args
->
batch_normalization_10_beta
=
batch_normalization_10_beta
;
args
->
batch_normalization_10_beta_bytes
=
0
;
args
->
batch_normalization_10_mean
=
batch_normalization_10_mean
;
args
->
batch_normalization_10_mean_bytes
=
0
;
args
->
batch_normalization_10_variance
=
batch_normalization_10_variance
;
args
->
batch_normalization_10_variance_bytes
=
0
;
args
->
conv2d_6_w
=
conv2d_6_w
;
args
->
conv2d_6_w_bytes
=
0
;
args
->
batch_normalization_11_gamma
=
batch_normalization_11_gamma
;
args
->
batch_normalization_11_gamma_bytes
=
0
;
args
->
batch_normalization_11_beta
=
batch_normalization_11_beta
;
args
->
batch_normalization_11_beta_bytes
=
0
;
args
->
batch_normalization_11_mean
=
batch_normalization_11_mean
;
args
->
batch_normalization_11_mean_bytes
=
0
;
args
->
batch_normalization_11_variance
=
batch_normalization_11_variance
;
args
->
batch_normalization_11_variance_bytes
=
0
;
args
->
depthwise_conv2d_6_w
=
depthwise_conv2d_6_w
;
args
->
depthwise_conv2d_6_w_bytes
=
0
;
args
->
batch_normalization_12_gamma
=
batch_normalization_12_gamma
;
args
->
batch_normalization_12_gamma_bytes
=
0
;
args
->
batch_normalization_12_beta
=
batch_normalization_12_beta
;
args
->
batch_normalization_12_beta_bytes
=
0
;
args
->
batch_normalization_12_mean
=
batch_normalization_12_mean
;
args
->
batch_normalization_12_mean_bytes
=
0
;
args
->
batch_normalization_12_variance
=
batch_normalization_12_variance
;
args
->
batch_normalization_12_variance_bytes
=
0
;
args
->
conv2d_7_w
=
conv2d_7_w
;
args
->
conv2d_7_w_bytes
=
0
;
args
->
batch_normalization_13_gamma
=
batch_normalization_13_gamma
;
args
->
batch_normalization_13_gamma_bytes
=
0
;
args
->
batch_normalization_13_beta
=
batch_normalization_13_beta
;
args
->
batch_normalization_13_beta_bytes
=
0
;
args
->
batch_normalization_13_mean
=
batch_normalization_13_mean
;
args
->
batch_normalization_13_mean_bytes
=
0
;
args
->
batch_normalization_13_variance
=
batch_normalization_13_variance
;
args
->
batch_normalization_13_variance_bytes
=
0
;
args
->
dense_1_w
=
dense_1_w
;
args
->
dense_1_w_bytes
=
0
;
args
->
dense_1_b
=
dense_1_b
;
args
->
dense_1_b_bytes
=
0
;
void
*
dfg
=
__visc__launch
(
0
,
root
,
(
void
*
)
args
);
__visc__wait
(
dfg
);
void
*
result
=
static_cast
<
RootIn
*>
(
args
)
->
input
;
hpvm_request_tensor
(
result
,
0
);
__visc__cleanup
();
computeAccuracy2
(
labels
,
5000
,
result
);
return
0
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment