Skip to content
Snippets Groups Projects
Commit 541c86f1 authored by Nathan Zhao's avatar Nathan Zhao
Browse files

update expected accuracy, fix frontend causing mobilenet problem

parent fb38f12b
No related branches found
No related tags found
No related merge requests found
...@@ -2,21 +2,6 @@ ...@@ -2,21 +2,6 @@
## Installing Dependencies ## Installing Dependencies
### Updating pip
The pip version required in this subproject must be >= `19.3`.
To upgrade pip:
```
pip install --upgrade pip
```
To check installed pip version:
```
pip -V
```
### Importing Conda Environment: ### Importing Conda Environment:
``` ```
...@@ -55,11 +40,11 @@ List of benchmarks and the expected accuracies: ...@@ -55,11 +40,11 @@ List of benchmarks and the expected accuracies:
| ResNet50-ImageNet | 74.50 | | ResNet50-ImageNet | 74.50 |
| VGG16-CIFAR10 | 89.42 | | VGG16-CIFAR10 | 89.42 |
| VGG16-CIFAR100 | 66.20 | | VGG16-CIFAR100 | 66.20 |
| VGG16-ImageNet | 72.50 | | VGG16-ImageNet | 72.50 | todo: fix broken
Activate conda environment (above) before running benchmarks Activate conda environment (above) before running benchmarks
### Synopsis ### Synopsys
``` ```
python src/${BENCH_NAME}.py [hpvm_reload|keras_reload] [frontend] python src/${BENCH_NAME}.py [hpvm_reload|keras_reload] [frontend]
......
...@@ -151,8 +151,9 @@ def reloadHPVMWeights(model, reload_dir, output_model): ...@@ -151,8 +151,9 @@ def reloadHPVMWeights(model, reload_dir, output_model):
#-- print ("** w_path = ", w_path) #-- print ("** w_path = ", w_path)
w_arr = np.fromfile(w_path, dtype='float32') w_arr = np.fromfile(w_path, dtype='float32')
b_path = reload_dir + layer_name + "_b.bin" if layer.use_bias:
b_arr = np.fromfile(b_path, dtype='float32') b_path = reload_dir + layer_name + "_b.bin"
b_arr = np.fromfile(b_path, dtype='float32')
w_shape = layer.get_weights()[0].shape w_shape = layer.get_weights()[0].shape
if "conv" in layer_name: if "conv" in layer_name:
...@@ -163,7 +164,10 @@ def reloadHPVMWeights(model, reload_dir, output_model): ...@@ -163,7 +164,10 @@ def reloadHPVMWeights(model, reload_dir, output_model):
if "dense" in layer_name: if "dense" in layer_name:
w_arr = np.reshape(w_arr, w_shape) w_arr = np.reshape(w_arr, w_shape)
weights = [w_arr, b_arr] if layer.use_bias:
weights = [w_arr, b_arr]
else:
weights = [w_arr]
layer.set_weights(weights) layer.set_weights(weights)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment