Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
48fce727
Commit
48fce727
authored
4 years ago
by
nz11
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parent
a39dd418
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
llvm/projects/keras/src/alexnet_imagenet.py
+253
-0
253 additions, 0 deletions
llvm/projects/keras/src/alexnet_imagenet.py
with
253 additions
and
0 deletions
llvm/projects/keras/src/alexnet_imagenet.py
0 → 100644
+
253
−
0
View file @
48fce727
import
os
import
glob
import
random
import
scipy
import
scipy.io
import
cv2
import
numpy
as
np
import
tensorflow
as
tf
import
keras
from
keras.models
import
Sequential
,
Model
from
keras.layers
import
*
from
keras.utils
import
to_categorical
from
keras
import
backend
as
K
import
torchvision.models
as
models
from
frontend.approxhpvm_translator
import
translate_to_approxhpvm
from
frontend.weight_utils
import
dumpCalibrationData2
np
.
random
.
seed
(
2020
)
os
.
environ
[
"
CUDA_VISIBLE_DEVICES
"
]
=
"
1
"
K
.
set_image_data_format
(
'
channels_first
'
)
data_format
=
'
channels_first
'
IMAGENET_DIR
=
'
/home/nz11/ILSVRC2012/
'
OUTPUT_DIR
=
'
data/alexnet_imagenet_tune/
'
WEIGHTS_PATH
=
'
data/weights.h5
'
NUM_CLASSES
=
200
IMAGES_PER_CLASS
=
40
# VAL_SIZE = 100
def
get_alexnet_nchw_keras
():
input_layer
=
Input
((
3
,
224
,
224
))
x
=
ZeroPadding2D
((
2
,
2
))(
input_layer
)
x
=
Conv2D
(
64
,
(
11
,
11
),
strides
=
4
,
padding
=
'
valid
'
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
MaxPooling2D
(
3
,
2
)(
x
)
x
=
ZeroPadding2D
((
2
,
2
))(
x
)
x
=
Conv2D
(
192
,
(
5
,
5
),
padding
=
'
valid
'
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
MaxPooling2D
(
3
,
2
)(
x
)
x
=
Conv2D
(
384
,
(
3
,
3
),
padding
=
'
same
'
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
Conv2D
(
256
,
(
3
,
3
),
padding
=
'
same
'
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
Conv2D
(
256
,
(
3
,
3
),
padding
=
'
same
'
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
MaxPooling2D
(
3
,
2
)(
x
)
x
=
Flatten
()(
x
)
x
=
Dropout
(
0.5
)(
x
)
x
=
Dense
(
4096
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
Dropout
(
0.5
)(
x
)
x
=
Dense
(
4096
)(
x
)
x
=
Activation
(
'
relu
'
)(
x
)
x
=
Dense
(
1000
)(
x
)
x
=
Activation
(
'
softmax
'
)(
x
)
model_nchw
=
Model
(
input_layer
,
x
)
torch_model
=
models
.
alexnet
(
pretrained
=
True
)
j
=
0
torch_weights
=
list
(
torch_model
.
parameters
())
for
i
in
range
(
len
(
model_nchw
.
layers
)):
if
(
2
*
j
>=
len
(
torch_weights
)):
break
w
=
torch_weights
[
2
*
j
].
detach
().
numpy
()
b
=
torch_weights
[
2
*
j
+
1
].
detach
().
numpy
()
if
(
len
(
w
.
shape
)
==
4
):
w
=
np
.
transpose
(
w
,
(
2
,
3
,
1
,
0
))
else
:
w
=
w
.
transpose
()
try
:
model_nchw
.
layers
[
i
].
set_weights
([
w
,
b
])
j
+=
1
print
([
w
.
shape
,
b
.
shape
],
'
loaded
'
)
except
:
pass
return
model_nchw
def
load_image
(
x
):
image
=
cv2
.
imread
(
x
)
height
,
width
,
_
=
image
.
shape
new_height
=
height
*
256
//
min
(
image
.
shape
[:
2
])
new_width
=
width
*
256
//
min
(
image
.
shape
[:
2
])
image
=
cv2
.
resize
(
image
,
(
new_width
,
new_height
),
interpolation
=
cv2
.
INTER_CUBIC
)
height
,
width
,
_
=
image
.
shape
startx
=
width
//
2
-
(
224
//
2
)
starty
=
height
//
2
-
(
224
//
2
)
image
=
image
[
starty
:
starty
+
224
,
startx
:
startx
+
224
]
image
=
image
[:,
:,
::
-
1
]
image
=
np
.
transpose
(
image
,
(
2
,
0
,
1
))
image
[:,
:,
0
]
=
(
image
[:,
:,
0
]
-
0.485
)
/
0.229
image
[:,
:,
1
]
=
(
image
[:,
:,
1
]
-
0.456
)
/
0.224
image
[:,
:,
2
]
=
(
image
[:,
:,
2
]
-
0.406
)
/
0.225
return
image
.
astype
(
np
.
float32
)
meta
=
scipy
.
io
.
loadmat
(
IMAGENET_DIR
+
'
ILSVRC2012_devkit_t12/data/meta.mat
'
)
original_idx_to_synset
=
{}
synset_to_name
=
{}
for
i
in
range
(
1000
):
ilsvrc2012_id
=
int
(
meta
[
'
synsets
'
][
i
,
0
][
0
][
0
][
0
])
synset
=
meta
[
'
synsets
'
][
i
,
0
][
1
][
0
]
name
=
meta
[
'
synsets
'
][
i
,
0
][
2
][
0
]
original_idx_to_synset
[
ilsvrc2012_id
]
=
synset
synset_to_name
[
synset
]
=
name
synset_to_keras_idx
=
{}
keras_idx_to_name
=
{}
f
=
open
(
IMAGENET_DIR
+
'
ILSVRC2012_devkit_t12/data/synset_words.txt
'
,
'
r
'
)
c
=
0
for
line
in
f
:
parts
=
line
.
split
(
'
'
)
synset_to_keras_idx
[
parts
[
0
]]
=
c
keras_idx_to_name
[
c
]
=
'
'
.
join
(
parts
[
1
:])
c
+=
1
f
.
close
()
model
=
get_alexnet_nchw_keras
()
X_tune
,
X_test
=
[],
[]
y_tune
,
y_true
=
[],
[]
classes
=
glob
.
glob
(
IMAGENET_DIR
+
'
val/*
'
)
for
c
in
np
.
random
.
permutation
(
len
(
classes
))[:
NUM_CLASSES
]:
x
=
glob
.
glob
(
classes
[
c
]
+
'
/*
'
)
x
=
np
.
array
(
x
)
idx
=
np
.
random
.
permutation
(
len
(
x
))
idx
=
idx
[:
max
(
len
(
idx
),
IMAGES_PER_CLASS
)]
synset
=
classes
[
c
].
split
(
'
/
'
)[
-
1
]
images
=
list
(
map
(
lambda
x
:
load_image
(
x
),
x
[
idx
]))
labels
=
[
synset_to_keras_idx
[
synset
]]
*
len
(
x
[
idx
])
X_test
+=
images
[:
IMAGES_PER_CLASS
//
2
]
y_true
+=
labels
[:
IMAGES_PER_CLASS
//
2
]
X_tune
+=
images
[
IMAGES_PER_CLASS
//
2
:]
y_tune
+=
labels
[
IMAGES_PER_CLASS
//
2
:]
X_test
=
np
.
array
(
X_test
)
y_true
=
np
.
array
(
y_true
)
X_tune
=
np
.
array
(
X_tune
)
y_tune
=
np
.
array
(
y_tune
)
def
train_helper
(
x
):
try
:
x
=
x
.
decode
(
'
utf-8
'
)
except
:
pass
image
=
load_image
(
x
)
y
=
np
.
zeros
(
1000
,
dtype
=
np
.
uint8
)
y
[
synset_to_keras_idx
[
x
.
split
(
'
/
'
)[
-
2
]]]
=
1
return
image
,
y
train_images
=
glob
.
glob
(
IMAGENET_DIR
+
'
train/*/*
'
)
random
.
shuffle
(
train_images
)
dataset
=
tf
.
data
.
Dataset
().
from_tensor_slices
(
train_images
)
dataset
=
dataset
.
map
(
lambda
x
:
tf
.
py_func
(
train_helper
,
[
x
],
[
tf
.
float32
,
tf
.
uint8
]),
num_parallel_calls
=
16
)
dataset
=
dataset
.
shuffle
(
buffer_size
=
1000
)
dataset
=
dataset
.
batch
(
64
)
dataset
=
dataset
.
repeat
()
next_element
=
dataset
.
make_one_shot_iterator
().
get_next
()
sess
=
tf
.
Session
()
def
generate
():
while
True
:
yield
sess
.
run
(
next_element
)
model
.
compile
(
optimizer
=
keras
.
optimizers
.
Adam
(
lr
=
0.00001
),
loss
=
'
categorical_crossentropy
'
,
metrics
=
[
'
acc
'
])
if
os
.
path
.
exists
(
WEIGHTS_PATH
):
model
.
load_weights
(
WEIGHTS_PATH
)
else
:
model
.
fit_generator
(
generate
(),
steps_per_epoch
=
1000
,
validation_data
=
(
X_test
,
to_categorical
(
y_true
,
num_classes
=
1000
)),
epochs
=
2
)
K
.
set_value
(
model
.
optimizer
.
lr
,
0.000001
)
model
.
fit_generator
(
generate
(),
steps_per_epoch
=
1000
,
validation_data
=
(
X_test
,
to_categorical
(
y_true
,
num_classes
=
1000
)),
epochs
=
6
)
model
.
save_weights
(
'
data/weights.h5
'
)
translate_to_approxhpvm
(
model
,
OUTPUT_DIR
,
X_tune
,
y_tune
,
1000
)
# dumpCalibrationData2(OUTPUT_DIR + 'test_input_10K.bin', X_test, OUTPUT_DIR + 'test_labels_10K.bin', y_true)
dumpCalibrationData2
(
OUTPUT_DIR
+
'
tune_input.bin
'
,
X_tune
,
OUTPUT_DIR
+
'
tune_labels.bin
'
,
y_tune
)
dumpCalibrationData2
(
OUTPUT_DIR
+
'
test_input.bin
'
,
X_test
,
OUTPUT_DIR
+
'
test_labels.bin
'
,
y_true
)
pred
=
np
.
argmax
(
model
.
predict
(
X_test
),
axis
=
1
)
print
(
'
val accuracy
'
,
np
.
sum
(
pred
==
y_true
.
ravel
())
/
len
(
X_test
))
pred
=
np
.
argmax
(
model
.
predict
(
X_tune
),
axis
=
1
)
print
(
'
val accuracy
'
,
np
.
sum
(
pred
==
y_tune
.
ravel
())
/
len
(
X_tune
))
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment