Skip to content
Snippets Groups Projects
Commit 475b44d2 authored by Yifan Zhao's avatar Yifan Zhao
Browse files

Added test cases for tuning (coming from torch frontend)

parent 8dcf6d55
No related branches found
No related tags found
No related merge requests found
Showing
with 135 additions and 11 deletions
# --[ llvm-lit test setup
# lit.cfg.py looks for tests in CMAKE_CURRENT_BINARY_DIR (see lit.cfg.py)
# as most of the tests require some kind of compilation / generation
# which is best done over there.
# --[ llvm-lit test setup for test_frontend/
configure_lit_site_cfg(
../../lit.site.cfg.py.in
${CMAKE_CURRENT_BINARY_DIR}/lit.site.cfg.py
${CMAKE_CURRENT_BINARY_DIR}/test_frontend/lit.site.cfg.py
MAIN_CONFIG
${CMAKE_CURRENT_SOURCE_DIR}/lit.cfg.py
${CMAKE_CURRENT_SOURCE_DIR}/test_frontend/lit.cfg.py
)
add_lit_testsuite(check-hpvm-torch2hpvm "Run tests for package torch2hpvm"
${CMAKE_CURRENT_BINARY_DIR}
add_lit_testsuite(check-hpvm-torch2hpvm "Run tests for HPVM PyTorch frontend"
${CMAKE_CURRENT_BINARY_DIR}/test_frontend
# We depend on check_dnn_acc.py defined in ../hpvm-c/
# to compare the inference accuracy of our frontend-generated binary
# to that of the baseline.
DEPENDS check_dnn_acc
ARGS "-j1" # Run frontend generation sequentially
)
# --[ llvm-lit test setup for test_tuning/
configure_lit_site_cfg(
../../lit.site.cfg.py.in
${CMAKE_CURRENT_BINARY_DIR}/test_tuning/lit.site.cfg.py
MAIN_CONFIG
${CMAKE_CURRENT_SOURCE_DIR}/test_tuning/lit.cfg.py
)
add_lit_testsuite(check-hpvm-tuning "Run tests for autotuning procedure"
${CMAKE_CURRENT_BINARY_DIR}/test_tuning
ARGS "-j1" # Run tuning tests sequentially
)
#!/usr/bin/env python3
import os
import shutil
import site
from pathlib import Path
......@@ -10,7 +9,7 @@ import torch
from torch2hpvm import BinDataset, ModelExporter
from torch.nn import Module
site.addsitedir(os.path.dirname(__file__))
site.addsitedir(Path(__file__).parent.parent.absolute())
import dnn
benchmarks = {
......@@ -33,7 +32,7 @@ print(f"Generating {netname} to {codegen_dir}")
if codegen_dir.exists():
shutil.rmtree(codegen_dir)
params = self_folder / "../model_params" / netname
params = self_folder / "../../model_params" / netname
dataset_shape = 5000, nch, img_size, img_size
bin_tuneset = BinDataset(
params / "tune_input.bin", params / "tune_labels.bin", dataset_shape
......
RUN: test_tuning.py alexnet_imagenet 0
RUN: test_tuning.py lenet_mnist 1
# -*- Python -*-
# Configuration file for the 'lit' test runner.
import os
import lit.formats
from lit.llvm import llvm_config
# name: The name of this test suite.
config.name = "HPVM-Predtuner"
# testFormat: The test format to use to interpret tests.
config.test_format = lit.formats.ShTest(False)
# suffixes: A list of file extensions to treat as test files. This is overriden
# by individual lit.local.cfg files in the test subdirectories.
config.suffixes = [".test"]
# test_source_root: The root path where tests are located.
config.test_source_root = os.path.dirname(__file__)
# test_exec_root: The root path where tests should be run.
current_source_dir = os.path.dirname(os.path.relpath(__file__, config.llvm_src_root))
current_binary_dir = os.path.join(config.llvm_obj_root, current_source_dir)
config.test_exec_root = current_binary_dir
# Tweak the PATH to include the tools dir.
llvm_config.with_environment("PATH", config.llvm_tools_dir, append_path=True)
# Add substitution for our main script in this directory.
llvm_config.add_tool_substitutions(["test_tuning.py"], config.test_source_root)
RUN: test_tuning.py mobilenet_cifar10 0
RUN: test_tuning.py resnet18_cifar10 0
import os
#!/usr/bin/env python3
import shutil
import site
from pathlib import Path
from sys import argv
import torch
from predtuner import config_pylogger
......@@ -9,41 +10,31 @@ from predtuner.pipedbin import PipedBinaryApp
from torch2hpvm import BinDataset, ModelExporter
from torch.nn import Module
site.addsitedir(os.path.dirname(__file__))
site.addsitedir(Path(__file__).parent.parent.absolute())
import dnn
# Set up logger to put log file in /tmp
msg_logger = config_pylogger(output_dir="/tmp", verbose=True)
benchmarks = {
"lenet_mnist": (dnn.LeNet, 1, 28, 1000),
"alexnet_imagenet": (dnn.AlexNetImageNet, 3, 224, 100),
"mobilenet_cifar10": (dnn.MobileNet, 3, 32, 500),
"resnet18_cifar10": (dnn.ResNet18, 3, 32, 500),
"vgg16_cifar10": (dnn.VGG16Cifar10, 3, 32, 500),
}
model_param = Path(__file__).parent / "../../model_params"
benchmarks = [
(dnn.LeNet, 1, 28, 500, "lenet_mnist"),
(dnn.AlexNet, 3, 32, 500, "alexnet_cifar10"),
(dnn.AlexNet2, 3, 32, 500, "alexnet2_cifar10"),
(dnn.AlexNetImageNet, 3, 224, 100, "alexnet_imagenet"),
(dnn.MobileNet, 3, 32, 500, "mobilenet_cifar10"),
(dnn.ResNet18, 3, 32, 500, "resnet18_cifar10"),
(dnn.ResNet50, 3, 224, 50, "resnet50_imagenet"),
(dnn.VGG16Cifar10, 3, 32, 500, "vgg16_cifar10"),
(dnn.VGG16Cifar100, 3, 32, 500, "vgg16_cifar100"),
(dnn.VGG16ImageNet, 3, 224, 50, "vgg16_imagenet"),
]
model_param = Path(__file__).parent / "../model_params"
def generate(model_cls, nch, img_size, batch_size, pathname):
codegen_dir = Path(f"/tmp/{pathname}_tune")
def generate(model_cls, nch, img_size, batch_size, netname):
codegen_dir = Path(f"./{netname}")
build_dir = codegen_dir / "build"
metadata_file = codegen_dir / "ops.json"
binary_file = build_dir / pathname
binary_file = build_dir / netname
build_dir = codegen_dir / "build"
# if binary_file.is_file() and metadata_file.is_file():
# return binary_file, metadata_file
print(f"Generating {pathname} to {codegen_dir}")
if codegen_dir.exists():
shutil.rmtree(codegen_dir)
params = model_param / pathname
params = model_param / netname
dataset_shape = 5000, nch, img_size, img_size
bin_tuneset = BinDataset(
params / "tune_input.bin", params / "tune_labels.bin", dataset_shape
......@@ -52,7 +43,7 @@ def generate(model_cls, nch, img_size, batch_size, pathname):
params / "test_input.bin", params / "test_labels.bin", dataset_shape
)
model: Module = model_cls()
checkpoint = model_param / f"{pathname}.pth.tar"
checkpoint = model_param / f"pytorch/{netname}.pth.tar"
model.load_state_dict(torch.load(checkpoint.as_posix()))
exporter = ModelExporter(
model, bin_tuneset, bin_testset, codegen_dir, target="hpvm_tensor_inspect"
......@@ -62,19 +53,27 @@ def generate(model_cls, nch, img_size, batch_size, pathname):
def main():
for model_cls, nch, img_size, batch_size, pathname in benchmarks:
print(f"Testing {pathname}")
binary_file, metadata_file = generate(
model_cls, nch, img_size, batch_size, pathname
)
app = PipedBinaryApp("test", binary_file, metadata_file)
tuner = app.get_tuner()
tuner.tune(100, 3.0, 3.0, True, 50, cost_model="cost_linear")
tuner.dump_configs("configs.json")
fig = tuner.plot_configs(show_qos_loss=True)
fig.savefig("configs.png", dpi=300)
app.dump_hpvm_configs(tuner.best_configs, "hpvm_confs.txt")
netname, is_pred = argv[1:]
is_pred = int(is_pred)
model_cls, nch, img_size, batch_size = benchmarks[netname]
binary_file, metadata_file = generate(
model_cls, nch, img_size, batch_size, netname
)
print(Path.cwd(), binary_file, metadata_file)
app = PipedBinaryApp("test", binary_file, metadata_file)
tuner = app.get_tuner()
tuner.tune(
5,
3.0,
is_threshold_relative=True,
cost_model="cost_linear",
qos_model="qos_p1" if is_pred else "none",
)
tuner.dump_configs("configs.json")
fig = tuner.plot_configs(show_qos_loss=True)
fig.savefig("configs.png", dpi=300)
app.dump_hpvm_configs(tuner.best_configs, "hpvm_confs.txt")
if __name__ == "__main__":
main()
\ No newline at end of file
main()
RUN: test_tuning.py vgg16_cifar10 0
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment