Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
2fafd8df
Commit
2fafd8df
authored
6 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Adding Top-5% acc compuation to utils and VGG-16_CIFAR100
parent
a460ea06
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h
+67
-5
67 additions, 5 deletions
llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h
llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_5.cc
+167
-0
167 additions, 0 deletions
...ojects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_5.cc
with
234 additions
and
5 deletions
llvm/projects/hpvm-tensor-rt/dnn_sources/include/utils.h
+
67
−
5
View file @
2fafd8df
...
...
@@ -6,6 +6,7 @@
#include
<sstream>
#include
<vector>
#include
<bits/stdc++.h>
#include
"../../tensor_runtime/include/tensor.h"
#include
"types.h"
...
...
@@ -331,10 +332,6 @@ uint8_t* readLabelsBatch(const char* labels_file, int start, int end){
size_t
bytes_read
=
fread
(
labels
,
1
,
sizeof
(
uint8_t
)
*
num_labels
,
file
);
/*for(unsigned int i = 0 ; i < 20; i++){
printf("labels[%d] = %u \n", i, labels[i]);
}
*/
fclose
(
file
);
...
...
@@ -398,7 +395,6 @@ float computeAccuracy2(uint8_t* labels, int num_labels, void* result_ptr, unsign
printf
(
"batch_dim = %lu, channels = %lu
\n
"
,
batch_dim
,
channels
);
//for(int i = 0; i < batch_dim; i++){
for
(
int
i
=
0
;
i
<
num_labels
;
i
++
){
int
chosen
=
0
;
...
...
@@ -435,6 +431,72 @@ float computeAccuracy2(uint8_t* labels, int num_labels, void* result_ptr, unsign
}
struct
ClassProb
{
float
prob
;
int
index
;
};
bool
descendFloatComp
(
ClassProb
obj1
,
ClassProb
obj2
){
return
obj1
.
prob
>
obj2
.
prob
;
}
float
computeTop5Accuracy
(
uint8_t
*
labels
,
int
num_labels
,
void
*
result_ptr
,
unsigned
num_classes
=
10
){
struct
Tensor
*
result
=
(
struct
Tensor
*
)
result_ptr
;
size_t
batch_dim
=
result
->
dims
.
dim_sizes
[
0
];
size_t
channels
=
result
->
dims
.
dim_sizes
[
1
];
float
*
data
=
(
float
*
)
result
->
host_data
;
int
num_errors
=
0
;
printf
(
"batch_dim = %lu, channels = %lu
\n
"
,
batch_dim
,
channels
);
for
(
int
i
=
0
;
i
<
num_labels
;
i
++
){
std
::
vector
<
ClassProb
>
elem_probs
;
for
(
int
id
=
0
;
id
<
num_classes
;
++
id
){
ClassProb
cProb
;
cProb
.
prob
=
data
[
i
*
channels
+
id
];
cProb
.
index
=
id
;
elem_probs
.
push_back
(
cProb
);
}
std:
sort
(
elem_probs
.
begin
(),
elem_probs
.
end
(),
descendFloatComp
);
// Check if any of top-5 predictions matches
bool
matched
=
false
;
for
(
int
j
=
0
;
j
<
5
;
j
++
){
ClassProb
cProb
=
elem_probs
[
j
];
if
(
cProb
.
index
==
labels
[
i
])
matched
=
true
;
}
if
(
!
matched
)
num_errors
+=
1
;
}
float
accuracy
=
((
batch_dim
-
num_errors
)
*
1
.
0
/
batch_dim
*
1
.
0
)
*
100
.
0
;
printf
(
"****** Accuracy = %f
\n\n
"
,
accuracy
);
FILE
*
fp
=
fopen
(
"final_accuracy"
,
"w+"
);
if
(
fp
!=
NULL
){
std
::
ostringstream
ss
;
ss
<<
std
::
fixed
<<
accuracy
;
std
::
string
print_str
=
ss
.
str
();
fwrite
(
print_str
.
c_str
(),
1
,
print_str
.
length
(),
fp
);
}
fclose
(
fp
);
return
accuracy
;
}
void
dumpFinalAccuracy
(
float
accuracy
){
printf
(
"
\n\n
**** Final Accuracy = %f
\n
"
,
accuracy
);
...
...
This diff is collapsed.
Click to expand it.
llvm/projects/hpvm-tensor-rt/dnn_sources/src/vgg16_cifar100_5.cc
0 → 100644
+
167
−
0
View file @
2fafd8df
#include
<stdio.h>
#include
<stdlib.h>
#include
<unistd.h>
#include
<fcntl.h>
#include
<sys/types.h>
#include
<sys/stat.h>
#include
<string.h>
#include
"../../tensor_runtime/include/tensor_runtime.h"
#include
"../include/utils.h"
int
main
(){
llvm_hpvm_initTensorRt
(
0
);
std
::
string
dir_prefix
=
std
::
string
(
"../model_params/vgg16_cifar100_front/"
);
//std::string input_path = dir_prefix + std::string("vgg16_cifar100_calib.bin");
//std::string labels_path = dir_prefix + std::string("vgg16_cifar100_train_labels.bin");
std
::
string
input_path
=
dir_prefix
+
std
::
string
(
"input.bin"
);
std
::
string
labels_path
=
dir_prefix
+
std
::
string
(
"labels.bin"
);
std
::
string
conv2d_1_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_1_w.bin"
);
void
*
conv2d_1_w
=
readTrainedWeights
(
conv2d_1_w_path
.
c_str
(),
0
,
64
,
3
,
3
,
3
);
std
::
string
conv2d_1_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_1_b.bin"
);
void
*
conv2d_1_b
=
readTrainedWeights
(
conv2d_1_b_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
conv2d_2_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_2_w.bin"
);
void
*
conv2d_2_w
=
readTrainedWeights
(
conv2d_2_w_path
.
c_str
(),
0
,
64
,
64
,
3
,
3
);
std
::
string
conv2d_2_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_2_b.bin"
);
void
*
conv2d_2_b
=
readTrainedWeights
(
conv2d_2_b_path
.
c_str
(),
0
,
1
,
64
,
1
,
1
);
std
::
string
conv2d_3_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_3_w.bin"
);
void
*
conv2d_3_w
=
readTrainedWeights
(
conv2d_3_w_path
.
c_str
(),
0
,
128
,
64
,
3
,
3
);
std
::
string
conv2d_3_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_3_b.bin"
);
void
*
conv2d_3_b
=
readTrainedWeights
(
conv2d_3_b_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
conv2d_4_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_4_w.bin"
);
void
*
conv2d_4_w
=
readTrainedWeights
(
conv2d_4_w_path
.
c_str
(),
0
,
128
,
128
,
3
,
3
);
std
::
string
conv2d_4_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_4_b.bin"
);
void
*
conv2d_4_b
=
readTrainedWeights
(
conv2d_4_b_path
.
c_str
(),
0
,
1
,
128
,
1
,
1
);
std
::
string
conv2d_5_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_5_w.bin"
);
void
*
conv2d_5_w
=
readTrainedWeights
(
conv2d_5_w_path
.
c_str
(),
0
,
256
,
128
,
3
,
3
);
std
::
string
conv2d_5_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_5_b.bin"
);
void
*
conv2d_5_b
=
readTrainedWeights
(
conv2d_5_b_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
conv2d_6_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_6_w.bin"
);
void
*
conv2d_6_w
=
readTrainedWeights
(
conv2d_6_w_path
.
c_str
(),
0
,
256
,
256
,
3
,
3
);
std
::
string
conv2d_6_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_6_b.bin"
);
void
*
conv2d_6_b
=
readTrainedWeights
(
conv2d_6_b_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
conv2d_7_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_7_w.bin"
);
void
*
conv2d_7_w
=
readTrainedWeights
(
conv2d_7_w_path
.
c_str
(),
0
,
256
,
256
,
3
,
3
);
std
::
string
conv2d_7_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_7_b.bin"
);
void
*
conv2d_7_b
=
readTrainedWeights
(
conv2d_7_b_path
.
c_str
(),
0
,
1
,
256
,
1
,
1
);
std
::
string
conv2d_8_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_8_w.bin"
);
void
*
conv2d_8_w
=
readTrainedWeights
(
conv2d_8_w_path
.
c_str
(),
0
,
512
,
256
,
3
,
3
);
std
::
string
conv2d_8_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_8_b.bin"
);
void
*
conv2d_8_b
=
readTrainedWeights
(
conv2d_8_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
conv2d_9_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_9_w.bin"
);
void
*
conv2d_9_w
=
readTrainedWeights
(
conv2d_9_w_path
.
c_str
(),
0
,
512
,
512
,
3
,
3
);
std
::
string
conv2d_9_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_9_b.bin"
);
void
*
conv2d_9_b
=
readTrainedWeights
(
conv2d_9_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
conv2d_10_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_10_w.bin"
);
void
*
conv2d_10_w
=
readTrainedWeights
(
conv2d_10_w_path
.
c_str
(),
0
,
512
,
512
,
3
,
3
);
std
::
string
conv2d_10_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_10_b.bin"
);
void
*
conv2d_10_b
=
readTrainedWeights
(
conv2d_10_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
conv2d_11_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_11_w.bin"
);
void
*
conv2d_11_w
=
readTrainedWeights
(
conv2d_11_w_path
.
c_str
(),
0
,
512
,
512
,
3
,
3
);
std
::
string
conv2d_11_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_11_b.bin"
);
void
*
conv2d_11_b
=
readTrainedWeights
(
conv2d_11_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
conv2d_12_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_12_w.bin"
);
void
*
conv2d_12_w
=
readTrainedWeights
(
conv2d_12_w_path
.
c_str
(),
0
,
512
,
512
,
3
,
3
);
std
::
string
conv2d_12_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_12_b.bin"
);
void
*
conv2d_12_b
=
readTrainedWeights
(
conv2d_12_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
conv2d_13_w_path
=
dir_prefix
+
std
::
string
(
"conv2d_13_w.bin"
);
void
*
conv2d_13_w
=
readTrainedWeights
(
conv2d_13_w_path
.
c_str
(),
0
,
512
,
512
,
3
,
3
);
std
::
string
conv2d_13_b_path
=
dir_prefix
+
std
::
string
(
"conv2d_13_b.bin"
);
void
*
conv2d_13_b
=
readTrainedWeights
(
conv2d_13_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
dense_1_w_path
=
dir_prefix
+
std
::
string
(
"dense_1_w.bin"
);
void
*
dense_1_w
=
readTrainedWeights
(
dense_1_w_path
.
c_str
(),
0
,
1
,
1
,
512
,
512
);
std
::
string
dense_1_b_path
=
dir_prefix
+
std
::
string
(
"dense_1_b.bin"
);
void
*
dense_1_b
=
readTrainedWeights
(
dense_1_b_path
.
c_str
(),
0
,
1
,
512
,
1
,
1
);
std
::
string
dense_2_w_path
=
dir_prefix
+
std
::
string
(
"dense_2_w.bin"
);
void
*
dense_2_w
=
readTrainedWeights
(
dense_2_w_path
.
c_str
(),
0
,
1
,
1
,
512
,
100
);
std
::
string
dense_2_b_path
=
dir_prefix
+
std
::
string
(
"dense_2_b.bin"
);
void
*
dense_2_b
=
readTrainedWeights
(
dense_2_b_path
.
c_str
(),
0
,
1
,
100
,
1
,
1
);
startMemTracking
();
int
test_input_size
=
5000
;
int
batch_size
=
2500
;
int
offset
=
5000
;
int
batch_count
=
test_input_size
/
batch_size
;
float
final_accuracy
=
0.0
;
for
(
int
i
=
0
;
i
<
batch_count
;
i
++
){
int
start
=
i
*
batch_size
+
offset
;
int
end
=
(
i
+
1
)
*
batch_size
+
offset
;
void
*
input
=
readInputBatch
(
input_path
.
c_str
(),
0
,
start
,
end
,
3
,
32
,
32
);
void
*
var_0
=
tensorConvolution
(
input
,
conv2d_1_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_1
=
tensorAdd
(
var_0
,
conv2d_1_b
);
void
*
var_2
=
tensorRelu
(
var_1
);
void
*
var_4
=
tensorConvolution
(
var_2
,
conv2d_2_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_5
=
tensorAdd
(
var_4
,
conv2d_2_b
);
void
*
var_6
=
tensorRelu
(
var_5
);
void
*
var_7
=
tensorPooling
(
var_6
,
0
,
2
,
2
,
0
,
0
,
2
,
2
);
void
*
var_8
=
tensorConvolution
(
var_7
,
conv2d_3_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_9
=
tensorAdd
(
var_8
,
conv2d_3_b
);
void
*
var_10
=
tensorRelu
(
var_9
);
void
*
var_12
=
tensorConvolution
(
var_10
,
conv2d_4_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_13
=
tensorAdd
(
var_12
,
conv2d_4_b
);
void
*
var_14
=
tensorRelu
(
var_13
);
void
*
var_15
=
tensorPooling
(
var_14
,
0
,
2
,
2
,
0
,
0
,
2
,
2
);
void
*
var_16
=
tensorConvolution
(
var_15
,
conv2d_5_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_17
=
tensorAdd
(
var_16
,
conv2d_5_b
);
void
*
var_18
=
tensorRelu
(
var_17
);
void
*
var_20
=
tensorConvolution
(
var_18
,
conv2d_6_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_21
=
tensorAdd
(
var_20
,
conv2d_6_b
);
void
*
var_22
=
tensorRelu
(
var_21
);
void
*
var_24
=
tensorConvolution
(
var_22
,
conv2d_7_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_25
=
tensorAdd
(
var_24
,
conv2d_7_b
);
void
*
var_26
=
tensorRelu
(
var_25
);
void
*
var_27
=
tensorPooling
(
var_26
,
0
,
2
,
2
,
0
,
0
,
2
,
2
);
void
*
var_28
=
tensorConvolution
(
var_27
,
conv2d_8_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_29
=
tensorAdd
(
var_28
,
conv2d_8_b
);
void
*
var_30
=
tensorRelu
(
var_29
);
void
*
var_32
=
tensorConvolution
(
var_30
,
conv2d_9_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_33
=
tensorAdd
(
var_32
,
conv2d_9_b
);
void
*
var_34
=
tensorRelu
(
var_33
);
void
*
var_36
=
tensorConvolution
(
var_34
,
conv2d_10_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_37
=
tensorAdd
(
var_36
,
conv2d_10_b
);
void
*
var_38
=
tensorRelu
(
var_37
);
void
*
var_39
=
tensorPooling
(
var_38
,
0
,
2
,
2
,
0
,
0
,
2
,
2
);
void
*
var_40
=
tensorConvolution
(
var_39
,
conv2d_11_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_41
=
tensorAdd
(
var_40
,
conv2d_11_b
);
void
*
var_42
=
tensorRelu
(
var_41
);
void
*
var_44
=
tensorConvolution
(
var_42
,
conv2d_12_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_45
=
tensorAdd
(
var_44
,
conv2d_12_b
);
void
*
var_46
=
tensorRelu
(
var_45
);
void
*
var_48
=
tensorConvolution
(
var_46
,
conv2d_13_w
,
1
,
1
,
1
,
1
,
1
,
0
);
void
*
var_49
=
tensorAdd
(
var_48
,
conv2d_13_b
);
void
*
var_50
=
tensorRelu
(
var_49
);
void
*
var_51
=
tensorPooling
(
var_50
,
0
,
2
,
2
,
0
,
0
,
2
,
2
);
void
*
var_54
=
tensorGemmGPU
(
var_51
,
dense_1_w
);
void
*
var_55
=
tensorAdd
(
var_54
,
dense_1_b
);
void
*
var_56
=
tensorRelu
(
var_55
);
void
*
var_58
=
tensorGemmGPU
(
var_56
,
dense_2_w
);
void
*
var_59
=
tensorAdd
(
var_58
,
dense_2_b
);
void
*
var_60
=
tensorSoftmax
(
var_59
);
uint8_t
*
labels
=
readLabelsBatch
(
labels_path
.
c_str
(),
start
,
end
);
//float accuracy = computeAccuracy2(labels, batch_size, var_60, 100);
float
accuracy
=
computeTop5Accuracy
(
labels
,
batch_size
,
var_60
,
100
);
final_accuracy
+=
accuracy
;
freeBatchMemory
();
}
final_accuracy
=
final_accuracy
/
batch_count
;
dumpFinalAccuracy
(
final_accuracy
);
llvm_hpvm_cleanupTensorRt
();
return
0
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment