Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hpvm-release
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
hpvm-release
Commits
2509a5a4
Commit
2509a5a4
authored
6 years ago
by
Hashim Sharif
Browse files
Options
Downloads
Patches
Plain Diff
Lenet-5 working with ApproxHPVM backends and Tensor Runtime
parent
ecacc226
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
llvm/test/VISC/DNN_Benchmarks/benchmarks/lenet/src/lenet.cpp
+236
-14
236 additions, 14 deletions
llvm/test/VISC/DNN_Benchmarks/benchmarks/lenet/src/lenet.cpp
llvm/test/VISC/DNN_Benchmarks/common/include/tensorUtils.h
+1
-1
1 addition, 1 deletion
llvm/test/VISC/DNN_Benchmarks/common/include/tensorUtils.h
with
237 additions
and
15 deletions
llvm/test/VISC/DNN_Benchmarks/benchmarks/lenet/src/lenet.cpp
+
236
−
14
View file @
2509a5a4
...
...
@@ -9,6 +9,7 @@
using
namespace
std
;
/* DNN Layer 1 **/
void
tensorConvNode1
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
...
...
@@ -43,21 +44,142 @@ void tensorTanhNode1(void *t1, size_t bytest1) {
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 1 **/
/* DNN Layer 2 **/
void
tensorConvNode2
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_convolution
(
t1
,
t2
,
2
,
2
,
1
,
1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode2
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorPoolNode2
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_pool_max
(
t1
,
2
,
2
,
0
,
0
,
2
,
2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode2
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 2 **/
/***** DNN Layer3 ****/
void
tensorMulNode3
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_mul
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode3
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode3
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 3 **/
/***** DNN Layer4 ****/
void
tensorMulNode4
(
void
*
t1
,
size_t
bytes1
,
void
*
t2
,
size_t
bytes2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
// X * W = t2 * t1
void
*
r
=
__visc__tensor_mul
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorAddNode4
(
void
*
t1
,
size_t
bytest1
,
void
*
t2
,
size_t
bytest2
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
2
,
t1
,
t2
,
0
);
void
*
r
=
__visc__tensor_add
(
t1
,
t2
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
void
tensorTanhNode4
(
void
*
t1
,
size_t
bytest1
)
{
__visc__hint
(
visc
::
CUDNN_TARGET
);
__visc__attributes
(
1
,
t1
,
0
);
void
*
r
=
__visc__tensor_tanh
(
t1
);
__visc__return
(
2
,
r
,
(
size_t
)
0
);
}
/** End of Layer 4 **/
void
root
(
void
*
x
,
size_t
x_bytes
,
void
*
conv1_w
,
size_t
conv1_w_bytes
,
void
*
conv1_b
,
size_t
conv1_b_bytes
,
void
*
conv2_w
,
size_t
conv2_w_bytes
,
void
*
conv2_b
,
size_t
conv2_b_bytes
){
void
*
conv2_b
,
size_t
conv2_b_bytes
,
void
*
fc1_w
,
size_t
fc1_w_bytes
,
void
*
fc1_b
,
size_t
fc1_b_bytes
,
void
*
fc2_w
,
size_t
fc2_w_bytes
,
void
*
fc2_b
,
size_t
fc2_b_bytes
){
__visc__hint
(
visc
::
CPU_TARGET
);
__visc__attributes
(
5
,
x
,
conv1_w
,
conv1_b
,
conv2_w
,
conv2_b
,
0
);
// Conv1 Nodes
void
*
nodeConv1
=
__visc__createNodeND
(
0
,
tensorConvNode1
);
void
*
nodeAdd1
=
__visc__createNodeND
(
0
,
tensorAddNode1
);
void
*
nodePool1
=
__visc__createNodeND
(
0
,
tensorPoolNode1
);
void
*
nodeTanh1
=
__visc__createNodeND
(
0
,
tensorTanhNode1
);
// Conv2 Nodes
void
*
nodeConv2
=
__visc__createNodeND
(
0
,
tensorConvNode2
);
void
*
nodeAdd2
=
__visc__createNodeND
(
0
,
tensorAddNode2
);
void
*
nodePool2
=
__visc__createNodeND
(
0
,
tensorPoolNode2
);
void
*
nodeTanh2
=
__visc__createNodeND
(
0
,
tensorTanhNode2
);
// FC1 Nodes
void
*
nodeMul3
=
__visc__createNodeND
(
0
,
tensorMulNode3
);
void
*
nodeAdd3
=
__visc__createNodeND
(
0
,
tensorAddNode3
);
void
*
nodeTanh3
=
__visc__createNodeND
(
0
,
tensorTanhNode3
);
// FC2 Nodes
void
*
nodeMul4
=
__visc__createNodeND
(
0
,
tensorMulNode4
);
void
*
nodeAdd4
=
__visc__createNodeND
(
0
,
tensorAddNode4
);
void
*
nodeTanh4
=
__visc__createNodeND
(
0
,
tensorTanhNode4
);
//***** Conv Layer 1 *******/
// node, src, dst, stream
__visc__bindIn
(
nodeConv1
,
0
,
0
,
0
);
__visc__bindIn
(
nodeConv1
,
1
,
1
,
0
);
...
...
@@ -79,10 +201,76 @@ void root(void *x, size_t x_bytes,
// node, node, type, src, dst, stream
__visc__edge
(
nodePool1
,
nodeTanh1
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodePool1
,
nodeTanh1
,
1
,
1
,
1
,
0
);
/**** Conv Layer 2 ****/
// ConvOp2
__visc__bindIn
(
nodeConv2
,
6
,
2
,
0
);
__visc__bindIn
(
nodeConv2
,
7
,
3
,
0
);
__visc__edge
(
nodeTanh1
,
nodeConv2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh1
,
nodeConv2
,
1
,
1
,
1
,
0
);
// AddOp2
__visc__bindIn
(
nodeAdd2
,
8
,
2
,
0
);
__visc__bindIn
(
nodeAdd2
,
9
,
3
,
0
);
__visc__edge
(
nodeConv2
,
nodeAdd2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeConv2
,
nodeAdd2
,
1
,
1
,
1
,
0
);
// PoolOp2
__visc__edge
(
nodeAdd2
,
nodePool2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd2
,
nodePool2
,
1
,
1
,
1
,
0
);
// TanhOp2
__visc__edge
(
nodePool2
,
nodeTanh2
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodePool2
,
nodeTanh2
,
1
,
1
,
1
,
0
);
/**** FC Layer 1 ****/
// MulOp3
__visc__bindIn
(
nodeMul3
,
10
,
2
,
0
);
__visc__bindIn
(
nodeMul3
,
11
,
3
,
0
);
__visc__bindOut
(
nodeTanh1
,
0
,
0
,
0
);
__visc__bindOut
(
nodeTanh1
,
1
,
1
,
0
);
__visc__edge
(
nodeTanh2
,
nodeMul3
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh2
,
nodeMul3
,
1
,
1
,
1
,
0
);
// AddOp3
__visc__bindIn
(
nodeAdd3
,
12
,
2
,
0
);
__visc__bindIn
(
nodeAdd3
,
13
,
3
,
0
);
__visc__edge
(
nodeMul3
,
nodeAdd3
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeMul3
,
nodeAdd3
,
1
,
1
,
1
,
0
);
// TanhOp3
__visc__edge
(
nodeAdd3
,
nodeTanh3
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd3
,
nodeTanh3
,
1
,
1
,
1
,
0
);
/**** FC Layer 2 ****/
// MulOp4
__visc__bindIn
(
nodeMul4
,
14
,
2
,
0
);
__visc__bindIn
(
nodeMul4
,
15
,
3
,
0
);
__visc__edge
(
nodeTanh3
,
nodeMul4
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeTanh3
,
nodeMul4
,
1
,
1
,
1
,
0
);
// AddOp4
__visc__bindIn
(
nodeAdd4
,
16
,
2
,
0
);
__visc__bindIn
(
nodeAdd4
,
17
,
3
,
0
);
__visc__edge
(
nodeMul4
,
nodeAdd4
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeMul4
,
nodeAdd4
,
1
,
1
,
1
,
0
);
// TanhOp4
__visc__edge
(
nodeAdd4
,
nodeTanh4
,
1
,
0
,
0
,
0
);
__visc__edge
(
nodeAdd4
,
nodeTanh4
,
1
,
1
,
1
,
0
);
/***** Output Binding ****/
__visc__bindOut
(
nodeTanh4
,
0
,
0
,
0
);
__visc__bindOut
(
nodeTanh4
,
1
,
1
,
0
);
}
...
...
@@ -97,44 +285,66 @@ typedef struct __attribute__((__packed__)) {
void
*
x
;
size_t
x_bytes
;
// 1st Layer parameters
void
*
conv1_w
;
void
*
conv1_w
;
size_t
conv1_w_bytes
;
void
*
conv1_b
;
void
*
conv1_b
;
size_t
conv1_b_bytes
;
// 2nd Layer parameters
void
*
conv2_w
;
void
*
conv2_w
;
size_t
conv2_w_bytes
;
void
*
conv2_b
;
void
*
conv2_b
;
size_t
conv2_b_bytes
;
// 3rd Layer parameters
void
*
fc1_w
;
size_t
fc1_w_bytes
;
void
*
fc1_b
;
size_t
fc1_b_bytes
;
// 4th Layer parameters
void
*
fc2_w
;
size_t
fc2_w_bytes
;
void
*
fc2_b
;
size_t
fc2_b_bytes
;
struct
ret_t
r
;
}
RootIn
;
int
main
()
{
int
test_batch_size
=
1000
;
int
test_batch_size
=
1000
0
;
std
::
string
prefix
=
"../../../../../../projects/hpvm-tensor-rt/model_params"
;
std
::
string
input_data_path
=
prefix
+
std
::
string
(
"/FC_network2/mnist_float_input.bin"
);
std
::
string
labels_path
=
"../../../../../../projects/hpvm-tensor-rt/model_params/lenet_params/datasets/t10k-labels-idx1-ubyte"
;
std
::
string
conv1_w_path
=
prefix
+
std
::
string
(
"/lenet_keras/conv1.bin"
);
std
::
string
conv1_b_path
=
prefix
+
std
::
string
(
"/lenet_keras/conv1_bias.bin"
);
std
::
string
conv2_w_path
=
prefix
+
std
::
string
(
"/lenet_keras/conv2.bin"
);
std
::
string
conv2_b_path
=
prefix
+
std
::
string
(
"/lenet_keras/conv2_bias.bin"
);
std
::
string
conv2_b_path
=
prefix
+
std
::
string
(
"/lenet_keras/conv2_bias.bin"
);
std
::
string
fc1_w_path
=
prefix
+
std
::
string
(
"/lenet_keras/fc1.bin"
);
std
::
string
fc1_b_path
=
prefix
+
std
::
string
(
"/lenet_keras/fc1_bias.bin"
);
std
::
string
fc2_w_path
=
prefix
+
std
::
string
(
"/lenet_keras/fc2.bin"
);
std
::
string
fc2_b_path
=
prefix
+
std
::
string
(
"/lenet_keras/fc2_bias.bin"
);
printf
(
"Reading Input Data from = %s
\n
"
,
input_data_path
.
c_str
());
uint8_t
*
labels
=
readLabels
(
labels_path
.
c_str
(),
test_batch_size
);
void
*
x
=
readTrainedWeights
(
input_data_path
.
c_str
(),
float_type
,
test_batch_size
,
1
,
28
,
28
);
void
*
conv1_w
=
readTrainedWeights
(
conv1_w_path
.
c_str
(),
float_type
,
32
,
1
,
5
,
5
);
void
*
conv1_b
=
readTrainedWeights
(
conv1_b_path
.
c_str
(),
float_type
,
1
,
32
,
1
,
1
);
void
*
conv2_w
=
readTrainedWeights
(
conv2_w_path
.
c_str
(),
float_type
,
64
,
32
,
5
,
5
);
void
*
conv2_b
=
readTrainedWeights
(
conv2_b_path
.
c_str
(),
float_type
,
1
,
64
,
1
,
1
);
void
*
fc1_w
=
readTrainedWeights
(
fc1_w_path
.
c_str
(),
float_type
,
1
,
1
,
7
*
7
*
64
,
1024
);
void
*
fc1_b
=
readTrainedWeights
(
fc1_b_path
.
c_str
(),
float_type
,
1
,
1024
,
1
,
1
);
void
*
fc2_w
=
readTrainedWeights
(
fc2_w_path
.
c_str
(),
float_type
,
1
,
1
,
1024
,
10
);
void
*
fc2_b
=
readTrainedWeights
(
fc2_b_path
.
c_str
(),
float_type
,
1
,
10
,
1
,
1
);
__visc__init
();
RootIn
*
args
=
static_cast
<
RootIn
*>
(
malloc
(
sizeof
(
RootIn
)));
args
->
x
=
x
;
args
->
x_bytes
=
0
;
// Conv Layers params
args
->
conv1_w
=
conv1_w
;
args
->
conv1_w_bytes
=
0
;
args
->
conv1_b
=
conv1_b
;
...
...
@@ -143,6 +353,15 @@ int main() {
args
->
conv2_w_bytes
=
0
;
args
->
conv2_b
=
conv2_b
;
args
->
conv2_b_bytes
=
0
;
// FC Layers params
args
->
fc1_w
=
fc1_w
;
args
->
fc1_w_bytes
=
0
;
args
->
fc1_b
=
fc1_b
;
args
->
fc1_b_bytes
=
0
;
args
->
fc2_w
=
fc2_w
;
args
->
fc2_w_bytes
=
0
;
args
->
fc2_b
=
fc2_b
;
args
->
fc2_b_bytes
=
0
;
void
*
dfg
=
__visc__launch
(
0
,
root
,
(
void
*
)
args
);
...
...
@@ -150,10 +369,13 @@ int main() {
// FIXME: Value returned in the wrong index!!
//void *r = static_cast<RootIn*>(args)->r.tensor;
void
*
r
=
static_cast
<
RootIn
*>
(
args
)
->
x
;
hpvm_request_tensor
(
r
,
0
);
void
*
r
esult
=
static_cast
<
RootIn
*>
(
args
)
->
x
;
hpvm_request_tensor
(
r
esult
,
0
);
__visc__cleanup
();
computeAccuracy2
(
labels
,
test_batch_size
,
result
);
return
0
;
}
...
...
This diff is collapsed.
Click to expand it.
llvm/test/VISC/DNN_Benchmarks/common/include/tensorUtils.h
+
1
−
1
View file @
2509a5a4
...
...
@@ -247,7 +247,7 @@ struct Tensor* readTrainedWeights(const char* file_name, int data_type, int dim1
}
uint8_t
*
readLabels
(
char
*
labels_file
,
int
num_labels
){
uint8_t
*
readLabels
(
const
char
*
labels_file
,
int
num_labels
){
int
file_header_size
=
8
;
uint8_t
*
labels
=
(
uint8_t
*
)
malloc
(
sizeof
(
uint8_t
)
*
num_labels
);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment