Skip to content
Snippets Groups Projects
Commit 1d52149a authored by Yifan Zhao's avatar Yifan Zhao
Browse files

Pick up predtuner updates and updated related document

parent dead5e39
No related branches found
No related tags found
No related merge requests found
...@@ -33,7 +33,7 @@ which explains their role, usage, and other details. ...@@ -33,7 +33,7 @@ which explains their role, usage, and other details.
keras-support keras-support
keras-benchmarks keras-benchmarks
torch2hpvm torch2hpvm
predtuner Predictive Tuner<https://predtuner.readthedocs.io/en/latest/index.html>
hpvm-profiler hpvm-profiler
......
../../projects/predtuner/README.rst
\ No newline at end of file
...@@ -188,7 +188,7 @@ After the tuning finishes, the tuner will ...@@ -188,7 +188,7 @@ After the tuning finishes, the tuner will
* save the HPVM config format (write-only) at ``./hpvm_confs.txt``. * save the HPVM config format (write-only) at ``./hpvm_confs.txt``.
It is also possible to save the configuration in other formats It is also possible to save the configuration in other formats
(see the :doc:`predtuner documentation </components/predtuner>`). (see the `predtuner documentation <https://predtuner.readthedocs.io/en/latest/index.html>`_).
Profiling the Configurations Profiling the Configurations
---------------------------- ----------------------------
......
Subproject commit 7159825f27ee7b3c5731ee1b9418c6eafda6622a Subproject commit d051790317d29a59ca15541d20c1a61318e56932
...@@ -24,14 +24,14 @@ def main(): ...@@ -24,14 +24,14 @@ def main():
binary_file, exporter = dnn.export_example_dnn(netname, codegen_dir, True) binary_file, exporter = dnn.export_example_dnn(netname, codegen_dir, True)
metadata_file = codegen_dir / exporter.metadata_file_name metadata_file = codegen_dir / exporter.metadata_file_name
# Tuning # Tuning
app = PipedBinaryApp("test", binary_file, metadata_file, tuning_device="cpu") app = PipedBinaryApp("test", binary_file, metadata_file, target_device="cpu")
tuner = app.get_tuner() tuner = app.get_tuner()
tuner.tune( tuner.tune(
5, 5,
3.0, 3.0,
is_threshold_relative=True, is_threshold_relative=True,
cost_model="cost_linear", cost_model="cost_linear",
qos_model="qos_p1" if is_pred else "none", qos_model="qos_p1" if is_pred else None,
) )
tuner.dump_configs("configs.json") tuner.dump_configs("configs.json")
fig = tuner.plot_configs(show_qos_loss=True) fig = tuner.plot_configs(show_qos_loss=True)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment