Skip to content
Snippets Groups Projects
Commit 185b5c30 authored by Hashim Sharif's avatar Hashim Sharif
Browse files

Adding layers and ops files for Imagenet DNNs

parent c8ba9851
No related branches found
No related tags found
No related merge requests found
Showing
with 1019 additions and 0 deletions
#Conv1,4
Conv1
Add1
Relu1
Pool1
#Conv2,4
Conv2
Add2
Relu2
Pool2
#Conv3,3
Conv3
Add3
Relu3
#Conv4,3
Conv4
Add4
Relu4
#Conv5,4
Conv5
Add5
Relu5
Pool3
#FC1,3
Mul1
Add6
Relu6
#FC2,3
Mul2
Add7
Relu7
#FC3,2
Mul3
Add8
conv add activation pool
conv add activation pool
conv add activation
conv add activation
conv add activation pool
dense add activation
dense add activation
dense add
import sys
op_map = {}
op_map["conv"] = "Conv"
op_map["add"] = "Add"
op_map["dense"] = "Mul"
op_map["pool"] = "Pool"
op_map["relu"] = "Relu"
op_map["activation"] = "Relu"
op_map["tanh"] = "Tanh"
op_map["batchnorm"] = "NML"
unique_op_map = {}
def getLayerStr(layer_toks):
layer_str = ""
for tok in layer_toks:
op_id = 1
if tok not in unique_op_map:
op_id = 1
unique_op_map[tok] = 1
else:
op_id = unique_op_map[tok]
op_id += 1
unique_op_map[tok] = op_id
layer_str += op_map[tok] + str(op_id) + "\n"
return layer_str
if __name__ == "__main__":
f_path = sys.argv[1]
out_path = sys.argv[2]
f = open(f_path)
f2 = open(out_path, "w+")
nml_id = 1
conv_id = 1
fc_id = 1
for x in f:
toks = x.split()
layer_len = len(toks)
if layer_len == 1 and "conv" not in toks and "dense" not in toks:
f2.write("#NML" + str(nml_id) + ",1\n")
nml_id += 1
if "conv" in toks:
f2.write("#Conv" + str(conv_id) + "," + str(layer_len) + "\n")
layer_str = getLayerStr(toks)
f2.write(layer_str)
conv_id += 1
if "dense" in toks:
f2.write("#FC" + str(fc_id) + "," + str(layer_len) + "\n")
layer_str = getLayerStr(toks)
f2.write(layer_str)
fc_id += 1
f2.close()
conv add activation pool
batchnorm
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
conv add
batchnorm
activation
conv add
batchnorm
activation
conv add
batchnorm
add
activation
pool
dense add
Conv1,6000,3,224,224,64,3,7,7
#tensorBatchNorm1
Conv2,6000,64,55,55,64,64,1,1
#tensorBatchNorm2
#tensorRelu1
Conv3,6000,64,55,55,64,64,3,3
#tensorBatchNorm3
#tensorRelu2
Conv4,6000,64,55,55,256,64,1,1
#tensorBatchNorm4
Conv5,6000,64,55,55,256,64,1,1
#tensorBatchNorm5
#tensorAdd1
#tensorRelu3
Conv6,6000,256,55,55,64,256,1,1
#tensorBatchNorm6
#tensorRelu4
Conv7,6000,64,55,55,64,64,3,3
#tensorBatchNorm7
#tensorRelu5
Conv8,6000,64,55,55,256,64,1,1
#tensorBatchNorm8
#tensorAdd2
#tensorRelu6
Conv9,6000,256,55,55,64,256,1,1
#tensorBatchNorm9
#tensorRelu7
Conv10,6000,64,55,55,64,64,3,3
#tensorBatchNorm10
#tensorRelu8
Conv11,6000,64,55,55,256,64,1,1
#tensorBatchNorm11
#tensorAdd3
#tensorRelu9
Conv12,6000,256,55,55,128,256,1,1
#tensorBatchNorm12
#tensorRelu10
Conv13,6000,128,28,28,128,128,3,3
#tensorBatchNorm13
#tensorRelu11
Conv14,6000,128,28,28,512,128,1,1
#tensorBatchNorm14
Conv15,6000,256,55,55,512,256,1,1
#tensorBatchNorm15
#tensorAdd4
#tensorRelu12
Conv16,6000,512,28,28,128,512,1,1
#tensorBatchNorm16
#tensorRelu13
Conv17,6000,128,28,28,128,128,3,3
#tensorBatchNorm17
#tensorRelu14
Conv18,6000,128,28,28,512,128,1,1
#tensorBatchNorm18
#tensorAdd5
#tensorRelu15
Conv19,6000,512,28,28,128,512,1,1
#tensorBatchNorm19
#tensorRelu16
Conv20,6000,128,28,28,128,128,3,3
#tensorBatchNorm20
#tensorRelu17
Conv21,6000,128,28,28,512,128,1,1
#tensorBatchNorm21
#tensorAdd6
#tensorRelu18
Conv22,6000,512,28,28,128,512,1,1
#tensorBatchNorm22
#tensorRelu19
Conv23,6000,128,28,28,128,128,3,3
#tensorBatchNorm23
#tensorRelu20
Conv24,6000,128,28,28,512,128,1,1
#tensorBatchNorm24
#tensorAdd7
#tensorRelu21
Conv25,6000,512,28,28,256,512,1,1
#tensorBatchNorm25
#tensorRelu22
Conv26,6000,256,14,14,256,256,3,3
#tensorBatchNorm26
#tensorRelu23
Conv27,6000,256,14,14,1024,256,1,1
#tensorBatchNorm27
Conv28,6000,512,28,28,1024,512,1,1
#tensorBatchNorm28
#tensorAdd8
#tensorRelu24
Conv29,6000,1024,14,14,256,1024,1,1
#tensorBatchNorm29
#tensorRelu25
Conv30,6000,256,14,14,256,256,3,3
#tensorBatchNorm30
#tensorRelu26
Conv31,6000,256,14,14,1024,256,1,1
#tensorBatchNorm31
#tensorAdd9
#tensorRelu27
Conv32,6000,1024,14,14,256,1024,1,1
#tensorBatchNorm32
#tensorRelu28
Conv33,6000,256,14,14,256,256,3,3
#tensorBatchNorm33
#tensorRelu29
Conv34,6000,256,14,14,1024,256,1,1
#tensorBatchNorm34
#tensorAdd10
#tensorRelu30
Conv35,6000,1024,14,14,256,1024,1,1
#tensorBatchNorm35
#tensorRelu31
Conv36,6000,256,14,14,256,256,3,3
#tensorBatchNorm36
#tensorRelu32
Conv37,6000,256,14,14,1024,256,1,1
#tensorBatchNorm37
#tensorAdd11
#tensorRelu33
Conv38,6000,1024,14,14,256,1024,1,1
#tensorBatchNorm38
#tensorRelu34
Conv39,6000,256,14,14,256,256,3,3
#tensorBatchNorm39
#tensorRelu35
Conv40,6000,256,14,14,1024,256,1,1
#tensorBatchNorm40
#tensorAdd12
#tensorRelu36
Conv41,6000,1024,14,14,256,1024,1,1
#tensorBatchNorm41
#tensorRelu37
Conv42,6000,256,14,14,256,256,3,3
#tensorBatchNorm42
#tensorRelu38
Conv43,6000,256,14,14,1024,256,1,1
#tensorBatchNorm43
#tensorAdd13
#tensorRelu39
Conv44,6000,1024,14,14,512,1024,1,1
#tensorBatchNorm44
#tensorRelu40
Conv45,6000,512,7,7,512,512,3,3
#tensorBatchNorm45
#tensorRelu41
Conv46,6000,512,7,7,2048,512,1,1
#tensorBatchNorm46
Conv47,6000,1024,14,14,2048,1024,1,1
#tensorBatchNorm47
#tensorAdd14
#tensorRelu42
Conv48,6000,2048,7,7,512,2048,1,1
#tensorBatchNorm48
#tensorRelu43
Conv49,6000,512,7,7,512,512,3,3
#tensorBatchNorm49
#tensorRelu44
Conv50,6000,512,7,7,2048,512,1,1
#tensorBatchNorm50
#tensorAdd15
#tensorRelu45
Conv51,6000,2048,7,7,512,2048,1,1
#tensorBatchNorm51
#tensorRelu46
Conv52,6000,512,7,7,512,512,3,3
#tensorBatchNorm52
#tensorRelu47
Conv53,6000,512,7,7,2048,512,1,1
#tensorBatchNorm53
#tensorAdd16
#tensorRelu48
#tensorPooling1
FC1,6000,2048,2048,1000
Conv1,6000,3,224,224,64,3,7,7,1,1
NML1
Conv2,6000,64,55,55,64,64,1,1,1,1
NML2
NML3
Conv3,6000,64,55,55,64,64,3,3,1,1
NML4
NML5
Conv4,6000,64,55,55,256,64,1,1,1,1
NML6
Conv5,6000,64,55,55,256,64,1,1,1,1
NML7
NML8
NML9
Conv6,6000,256,55,55,64,256,1,1,1,1
NML10
NML11
Conv7,6000,64,55,55,64,64,3,3,1,1
NML11
NML12
Conv8,6000,64,55,55,256,64,1,1,1,1
NML13
NML14
NML15
Conv9,6000,256,55,55,64,256,1,1,1,1
NML16
NML17
Conv10,6000,64,55,55,64,64,3,3,1,1
NML18
NML19
Conv11,6000,64,55,55,256,64,1,1,1,1
NML20
NML21
NML22
Conv12,6000,256,55,55,128,256,1,1,1,1
NML23
NML24
Conv13,6000,128,28,28,128,128,3,3,1,1
NML25
NML26
Conv14,6000,128,28,28,512,128,1,1,1,1
NML27
Conv15,6000,256,55,55,512,256,1,1,1,1
NML28
NML29
NML30
Conv16,6000,512,28,28,128,512,1,1,1,1
NML31
NML32
Conv17,6000,128,28,28,128,128,3,3,1,1
NML33
NML34
Conv18,6000,128,28,28,512,128,1,1,1,1
NML35
NML36
NML37
Conv19,6000,512,28,28,128,512,1,1,1,1
NML38
NML39
Conv20,6000,128,28,28,128,128,3,3,1,1
NML40
NML41
Conv21,6000,128,28,28,512,128,1,1,1,1
NML42
NML43
NML44
Conv22,6000,512,28,28,128,512,1,1,1,1
NML45
NML46
Conv23,6000,128,28,28,128,128,3,3,1,1
NML47
NML48
Conv24,6000,128,28,28,512,128,1,1,1,1
NML49
NML50
NML51
Conv25,6000,512,28,28,256,512,1,1,1,1
NML52
NML53
Conv26,6000,256,14,14,256,256,3,3,1,1
NML54
NML55
Conv27,6000,256,14,14,1024,256,1,1,1,1
NML56
Conv28,6000,512,28,28,1024,512,1,1,1,1
NML57
NML58
NML59
Conv29,6000,1024,14,14,256,1024,1,1,1,1
NML60
NML61
Conv30,6000,256,14,14,256,256,3,3,1,1
NML62
NML63
Conv31,6000,256,14,14,1024,256,1,1,1,1
NML64
NML65
NML66
Conv32,6000,1024,14,14,256,1024,1,1,1,1
NML67
NML68
Conv33,6000,256,14,14,256,256,3,3,1,1
NML69
NML70
Conv34,6000,256,14,14,1024,256,1,1,1,1
NML71
NML72
NML73
Conv35,6000,1024,14,14,256,1024,1,1,1,1
NML74
NML75
Conv36,6000,256,14,14,256,256,3,3,1,1
NML76
NML77
Conv37,6000,256,14,14,1024,256,1,1,1,1
NML78
NML79
NML80
Conv38,6000,1024,14,14,256,1024,1,1,1,1
NML81
NML82
Conv39,6000,256,14,14,256,256,3,3,1,1
NML83
NML84
Conv40,6000,256,14,14,1024,256,1,1,1,1
NML85
NML86
NML87
Conv41,6000,1024,14,14,256,1024,1,1,1,1
NML88
NML89
Conv42,6000,256,14,14,256,256,3,3,1,1
NML90
NML91
Conv43,6000,256,14,14,1024,256,1,1,1,1
NML92
NML93
NML94
Conv44,6000,1024,14,14,512,1024,1,1,1,1
NML95
NML96
Conv45,6000,512,7,7,512,512,3,3,1,1
NML97
NML98
Conv46,6000,512,7,7,2048,512,1,1,1,1
NML99
Conv47,6000,1024,14,14,2048,1024,1,1,1,1
NML100
NML101
NML102
Conv48,6000,2048,7,7,512,2048,1,1,1,1
NML103
NML104
Conv49,6000,512,7,7,512,512,3,3,1,1
NML105
NML106
Conv50,6000,512,7,7,2048,512,1,1,1,1
NML107
NML108
NML109
Conv51,6000,2048,7,7,512,2048,1,1,1,1
NML110
NML111
Conv52,6000,512,7,7,512,512,3,3,1,1
NML112
NML113
Conv53,6000,512,7,7,2048,512,1,1,1,1
NML114
NML115
NML116
NML117
FC1,6000,2048,2048,1000
#Conv1,4
Conv
Add
Relu
Pool
#NML1,1
#Conv2,2
Conv
Add
#NML2,1
#NML3,1
#Conv3,2
Conv
Add
#NML4,1
#NML5,1
#Conv4,2
Conv
Add
#NML6,1
#Conv5,2
Conv
Add
#NML7,1
#NML8,1
#NML9,1
#Conv6,2
Conv
Add
#NML10,1
#NML11,1
#Conv7,2
Conv
Add
#NML12,1
#NML13,1
#Conv8,2
Conv
Add
#NML14,1
#NML15,1
#NML16,1
#Conv9,2
Conv
Add
#NML17,1
#NML18,1
#Conv10,2
Conv
Add
#NML19,1
#NML20,1
#Conv11,2
Conv
Add
#NML21,1
#NML22,1
#NML23,1
#Conv12,2
Conv
Add
#NML24,1
#NML25,1
#Conv13,2
Conv
Add
#NML26,1
#NML27,1
#Conv14,2
Conv
Add
#NML28,1
#Conv15,2
Conv
Add
#NML29,1
#NML30,1
#NML31,1
#Conv16,2
Conv
Add
#NML32,1
#NML33,1
#Conv17,2
Conv
Add
#NML34,1
#NML35,1
#Conv18,2
Conv
Add
#NML36,1
#NML37,1
#NML38,1
#Conv19,2
Conv
Add
#NML39,1
#NML40,1
#Conv20,2
Conv
Add
#NML41,1
#NML42,1
#Conv21,2
Conv
Add
#NML43,1
#NML44,1
#NML45,1
#Conv22,2
Conv
Add
#NML46,1
#NML47,1
#Conv23,2
Conv
Add
#NML48,1
#NML49,1
#Conv24,2
Conv
Add
#NML50,1
#NML51,1
#NML52,1
#Conv25,2
Conv
Add
#NML53,1
#NML54,1
#Conv26,2
Conv
Add
#NML55,1
#NML56,1
#Conv27,2
Conv
Add
#NML57,1
#Conv28,2
Conv
Add
#NML58,1
#NML59,1
#NML60,1
#Conv29,2
Conv
Add
#NML61,1
#NML62,1
#Conv30,2
Conv
Add
#NML63,1
#NML64,1
#Conv31,2
Conv
Add
#NML65,1
#NML66,1
#NML67,1
#Conv32,2
Conv
Add
#NML68,1
#NML69,1
#Conv33,2
Conv
Add
#NML70,1
#NML71,1
#Conv34,2
Conv
Add
#NML72,1
#NML73,1
#NML74,1
#Conv35,2
Conv
Add
#NML75,1
#NML76,1
#Conv36,2
Conv
Add
#NML77,1
#NML78,1
#Conv37,2
Conv
Add
#NML79,1
#NML80,1
#NML81,1
#Conv38,2
Conv
Add
#NML82,1
#NML83,1
#Conv39,2
Conv
Add
#NML84,1
#NML85,1
#Conv40,2
Conv
Add
#NML86,1
#NML87,1
#NML88,1
#Conv41,2
Conv
Add
#NML89,1
#NML90,1
#Conv42,2
Conv
Add
#NML91,1
#NML92,1
#Conv43,2
Conv
Add
#NML93,1
#NML94,1
#NML95,1
#Conv44,2
Conv
Add
#NML96,1
#NML97,1
#Conv45,2
Conv
Add
#NML98,1
#NML99,1
#Conv46,2
Conv
Add
#NML100,1
#Conv47,2
Conv
Add
#NML101,1
#NML102,1
#NML103,1
#Conv48,2
Conv
Add
#NML104,1
#NML105,1
#Conv49,2
Conv
Add
#NML106,1
#NML107,1
#Conv50,2
Conv
Add
#NML108,1
#NML109,1
#NML110,1
#Conv51,2
Conv
Add
#NML111,1
#NML112,1
#Conv52,2
Conv
Add
#NML113,1
#NML114,1
#Conv53,2
Conv
Add
#NML115,1
#NML116,1
#NML117,1
#NML118,1
#FC1,2
Mul
Add
conv add activation
conv add activation pool
conv add activation
conv add activation pool
conv add activation
conv add activation
conv add activation pool
conv add activation
conv add activation
conv add activation pool
conv add activation
conv add activation
conv add activation pool
dense add activation
dense add activation
dense add
Conv1,6000,3,224,224,64,3,3,3
Conv2,6000,64,224,224,64,64,3,3
Conv3,6000,64,112,112,128,64,3,3
Conv4,6000,128,112,112,128,128,3,3
Conv5,6000,128,56,56,256,128,3,3
Conv6,6000,256,56,56,256,256,3,3
Conv7,6000,256,56,56,256,256,3,3
Conv8,6000,256,28,28,512,256,3,3
Conv9,6000,512,28,28,512,512,3,3
Conv10,6000,512,28,28,512,512,3,3
Conv11,6000,512,14,14,512,512,3,3
Conv12,6000,512,14,14,512,512,3,3
Conv13,6000,512,14,14,512,512,3,3
FC1,6000,25088,25088,4096
FC2,6000,4096,4096,4096
FC3,6000,4096,4096,1000
#Conv1,3
Conv1
Add1
Relu1
#Conv2,4
Conv2
Add2
Relu2
Pool1
#Conv3,3
Conv3
Add3
Relu3
#Conv4,4
Conv4
Add4
Relu4
Pool2
#Conv5,3
Conv5
Add5
Relu5
#Conv6,3
Conv6
Add6
Relu6
#Conv7,4
Conv7
Add7
Relu7
Pool3
#Conv8,3
Conv8
Add8
Relu8
#Conv9,3
Conv9
Add9
Relu9
#Conv10,4
Conv10
Add10
Relu10
Pool4
#Conv11,3
Conv11
Add11
Relu11
#Conv12,3
Conv12
Add12
Relu12
#Conv13,4
Conv13
Add13
Relu13
Pool5
#FC1,3
Mul1
Add14
Relu14
#FC2,3
Mul2
Add15
Relu15
#FC3,2
Mul3
Add16
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment