Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#
# Darknet RegionLoss
# Copyright EAVISE
#
import logging
import math
from distutils.version import LooseVersion
import numpy as np
import torch
import torch.nn as nn
try:
import pandas as pd
except ModuleNotFoundError:
pd = None
__all__ = ["RegionLoss"]
log = logging.getLogger(__name__)
torchversion = LooseVersion(torch.__version__)
version120 = LooseVersion("1.2.0")
class RegionLoss(nn.modules.loss._Loss):
"""Computes region loss from darknet network output and target annotation (yoloV2).
Args:
num_classes (int): number of classes to detect
anchors (list): 2D list representing anchor boxes (see :class:`lightnet.network.Darknet`)
stride (optional, int): The downsampling factor of the network (input_dimension / output_dimension); Default **32**
seen (optional, torch.Tensor): How many images the network has already been trained on; Default **0**
coord_scale (optional, float): weight of bounding box coordinates; Default **1.0**
noobject_scale (optional, float): weight of regions without target boxes; Default **1.0**
object_scale (optional, float): weight of regions with target boxes; Default **5.0**
class_scale (optional, float): weight of categorical predictions; Default **1.0**
thresh (optional, float): minimum iou between a predicted box and ground truth for them to be considered matching; Default **0.6**
coord_prefill (optional, int): This parameter controls for how many training samples the network will prefill the target coordinates, biassing the network to predict the center at **.5,.5**; Default **12800**
"""
def __init__(
self,
num_classes,
anchors,
stride=32,
seen=0,
coord_scale=1.0,
noobject_scale=1.0,
object_scale=5.0,
class_scale=1.0,
thresh=0.6,
coord_prefill=12800,
):
super().__init__()
self.num_classes = num_classes
self.stride = stride
self.num_anchors = len(anchors)
self.anchor_step = len(anchors[0])
self.anchors = torch.tensor(anchors, dtype=torch.float, requires_grad=False)
self.register_buffer("seen", torch.tensor(seen))
self.coord_scale = coord_scale
self.noobject_scale = noobject_scale
self.object_scale = object_scale
self.class_scale = class_scale
self.thresh = thresh
self.coord_prefill = coord_prefill
self.mse = nn.MSELoss(reduction="sum")
self.cel = nn.CrossEntropyLoss(reduction="sum")
self.loss_total = torch.tensor(0.0)
self.loss_conf = torch.tensor(0.0)
self.loss_coord = torch.tensor(0.0)
self.loss_class = torch.tensor(0.0)
@property
def values(self):
"""Return detached sub-losses in a dictionary.
Note:
You can access the individual loss values directly as ``object.loss_<name>`` as well. |br|
This will return the actual loss tensor with its attached computational graph and gives you full freedom for modifying this loss prior to the backward pass.
"""
return {
"total": self.loss_total.detach(),
"conf": self.loss_conf.detach(),
"coord": self.loss_coord.detach(),
"class": self.loss_class.detach(),
}
@property
def loss(self):
log.deprecated('The "loss" attribute is deprecated in favor for "loss_total"')
return self.loss_total
def extra_repr(self):
repr_str = f"classes={self.num_classes}, stride={self.stride}, threshold={self.thresh}, seen={self.seen.item()}\n"
repr_str += f"coord_scale={self.coord_scale}, object_scale={self.object_scale}, noobject_scale={self.noobject_scale}, class_scale={self.class_scale}\n"
repr_str += f"anchors="
for a in self.anchors:
repr_str += f"[{a[0]:.5g}, {a[1]:.5g}] "
return repr_str
def forward(self, output, target, seen=None):
""" Compute Region loss.
Args:
output (torch.autograd.Variable): Output from the network
target (brambox annotation dataframe or torch.Tensor): Brambox annotations or tensor containing the annotation targets (see :class:`lightnet.data.BramboxToTensor`)
seen (int, optional): How many images the network has already been trained on; Default **Add batch_size to previous seen value**
Note:
If using a target tensor, it should have the dimensions `[num_batch, num_anno, 5]` and following format per image:
.. math::
\\begin{bmatrix}
class\\_idx & x\\_center & y\\_center & width & height \\\\
class\\_idx & x\\_center & y\\_center & width & height \\\\
... \\\\
-1 & 0 & 0 & 0 & 0 \\\\
-1 & 0 & 0 & 0 & 0 \\\\
...
\\end{bmatrix}
With all coordinates being relative to the image size. |br|
Since the annotations from all images of a batch should be made of the same length, you can pad them with: `[-1, 0, 0, 0, 0]`.
Note:
Besides being easier to work with, brambox dataframes have the added benefit that
this loss function will also consider the ``ignore`` flag of annotations and ignore detections that match with it.
This allows you to have annotations that will not influence the loss in any way,
as opposed to having them removed and counting them as false detections.
"""
# Parameters
nB = output.data.size(0)
nA = self.num_anchors
nC = self.num_classes
nH = output.data.size(2)
nW = output.data.size(3)
nPixels = nH * nW
device = output.device
if seen is not None:
self.seen = torch.tensor(seen)
elif self.training:
self.seen += nB
# Get x,y,w,h,conf,cls
output = output.view(nB, nA, -1, nPixels)
coord = torch.zeros_like(output[:, :, :4])
coord[:, :, :2] = output[:, :, :2].sigmoid() # tx,ty
coord[:, :, 2:4] = output[:, :, 2:4] # tw,th
conf = output[:, :, 4].sigmoid()
if nC > 1:
cls = (
output[:, :, 5:]
.contiguous()
.view(nB * nA, nC, nPixels)
.transpose(1, 2)
.contiguous()
.view(-1, nC)
)
# Create prediction boxes
pred_boxes = torch.FloatTensor(nB * nA * nPixels, 4)
lin_x = torch.linspace(0, nW - 1, nW).repeat(nH, 1).view(nPixels).to(device)
lin_y = (
torch.linspace(0, nH - 1, nH)
.view(nH, 1)
.repeat(1, nW)
.view(nPixels)
.to(device)
)
anchor_w = self.anchors[:, 0].contiguous().view(nA, 1).to(device)
anchor_h = self.anchors[:, 1].contiguous().view(nA, 1).to(device)
pred_boxes[:, 0] = (coord[:, :, 0].detach() + lin_x).view(-1)
pred_boxes[:, 1] = (coord[:, :, 1].detach() + lin_y).view(-1)
pred_boxes[:, 2] = (coord[:, :, 2].detach().exp() * anchor_w).view(-1)
pred_boxes[:, 3] = (coord[:, :, 3].detach().exp() * anchor_h).view(-1)
pred_boxes = pred_boxes.cpu()
# Get target values
coord_mask, conf_mask, cls_mask, tcoord, tconf, tcls = self.build_targets(
pred_boxes, target, nB, nH, nW
)
coord_mask = coord_mask.expand_as(tcoord).to(device).sqrt()
conf_mask = conf_mask.to(device).sqrt()
tcoord = tcoord.to(device)
tconf = tconf.to(device)
if nC > 1:
tcls = tcls[cls_mask].view(-1).long().to(device)
cls_mask = cls_mask.view(-1, 1).repeat(1, nC).to(device)
cls = cls[cls_mask].view(-1, nC)
# Compute losses
self.loss_coord = (
self.coord_scale
* self.mse(coord * coord_mask, tcoord * coord_mask)
/ (2 * nB)
)
self.loss_conf = self.mse(conf * conf_mask, tconf * conf_mask) / (2 * nB)
if nC > 1:
if tcls.numel() > 0:
self.loss_class = self.class_scale * self.cel(cls, tcls) / nB
else:
self.loss_class = torch.tensor(0.0, device=device)
else:
self.loss_class = torch.tensor(0.0, device=device)
self.loss_total = self.loss_coord + self.loss_conf + self.loss_class
return self.loss_total
def build_targets(self, pred_boxes, ground_truth, nB, nH, nW):
"""Compare prediction boxes and targets, convert targets to network output tensors"""
if torch.is_tensor(ground_truth):
return self.__build_targets_tensor(pred_boxes, ground_truth, nB, nH, nW)
elif pd is not None and isinstance(ground_truth, pd.DataFrame):
return self.__build_targets_brambox(pred_boxes, ground_truth, nB, nH, nW)
else:
raise TypeError(f"Unkown ground truth format [{type(ground_truth)}]")
def __build_targets_tensor(self, pred_boxes, ground_truth, nB, nH, nW):
"""Compare prediction boxes and ground truths, convert ground truths to network output tensors"""
# Parameters
nT = ground_truth.size(1)
nA = self.num_anchors
nAnchors = nA * nH * nW
nPixels = nH * nW
# Tensors
coord_mask = torch.zeros(nB, nA, nH, nW, requires_grad=False)
conf_mask = (
torch.ones(nB, nA, nH, nW, requires_grad=False) * self.noobject_scale
)
if torchversion >= version120:
cls_mask = torch.zeros(
nB, nA, nH, nW, dtype=torch.bool, requires_grad=False
)
else:
cls_mask = torch.zeros(nB, nA, nH, nW, requires_grad=False).byte()
tcoord = torch.zeros(nB, nA, 4, nH, nW, requires_grad=False)
tconf = torch.zeros(nB, nA, nH, nW, requires_grad=False)
tcls = torch.zeros(nB, nA, nH, nW, requires_grad=False)
if self.training and self.seen < self.coord_prefill:
coord_mask.fill_(math.sqrt(0.01 / self.coord_scale))
if self.anchor_step == 4:
tcoord[:, :, 0] = (
self.anchors[:, 2]
.contiguous()
.view(1, nA, 1, 1)
.repeat(nB, 1, 1, nPixels)
)
tcoord[:, :, 1] = (
self.anchors[:, 3]
.contiguous()
.view(1, nA, 1, 1)
.repeat(nB, 1, 1, nPixels)
)
else:
tcoord[:, :, 0].fill_(0.5)
tcoord[:, :, 1].fill_(0.5)
# Anchors
if self.anchor_step == 4:
anchors = self.anchors.clone()
anchors[:, :2] = 0
else:
anchors = torch.cat([torch.zeros_like(self.anchors), self.anchors], 1)
# Loop over GT
for b in range(nB):
gt = ground_truth[b][
(ground_truth[b, :, 0] >= 0)[:, None].expand_as(ground_truth[b])
].view(-1, 5)
if gt.numel() == 0: # No gt for this image
continue
# Build up tensors
cur_pred_boxes = pred_boxes[b * nAnchors : (b + 1) * nAnchors]
gt = gt[:, 1:]
gt[:, ::2] *= nW
gt[:, 1::2] *= nH
# Set confidence mask of matching detections to 0
iou_gt_pred = bbox_ious(gt, cur_pred_boxes)
mask = (iou_gt_pred > self.thresh).sum(0) >= 1
conf_mask[b][mask.view_as(conf_mask[b])] = 0
# Find best anchor for each gt
iou_gt_anchors = bbox_wh_ious(gt, anchors)
_, best_anchors = iou_gt_anchors.max(1)
# Set masks and target values for each gt
nGT = gt.shape[0]
gi = gt[:, 0].clamp(0, nW - 1).long()
gj = gt[:, 1].clamp(0, nH - 1).long()
conf_mask[b, best_anchors, gj, gi] = self.object_scale
tconf[b, best_anchors, gj, gi] = iou_gt_pred.view(nGT, nA, nH, nW)[
torch.arange(nGT), best_anchors, gj, gi
]
coord_mask[b, best_anchors, gj, gi] = 2 - (gt[:, 2] * gt[:, 3]) / nPixels
tcoord[b, best_anchors, 0, gj, gi] = gt[:, 0] - gi.float()
tcoord[b, best_anchors, 1, gj, gi] = gt[:, 1] - gj.float()
tcoord[b, best_anchors, 2, gj, gi] = (
gt[:, 2] / self.anchors[best_anchors, 0]
).log()
tcoord[b, best_anchors, 3, gj, gi] = (
gt[:, 3] / self.anchors[best_anchors, 1]
).log()
cls_mask[b, best_anchors, gj, gi] = 1
tcls[b, best_anchors, gj, gi] = ground_truth[b, torch.arange(nGT), 0]
return (
coord_mask.view(nB, nA, 1, nPixels),
conf_mask.view(nB, nA, nPixels),
cls_mask.view(nB, nA, nPixels),
tcoord.view(nB, nA, 4, nPixels),
tconf.view(nB, nA, nPixels),
tcls.view(nB, nA, nPixels),
)
def __build_targets_brambox(self, pred_boxes, ground_truth, nB, nH, nW):
"""Compare prediction boxes and ground truths, convert ground truths to network output tensors"""
# Parameters
nA = self.num_anchors
nAnchors = nA * nH * nW
nPixels = nH * nW
# Tensors
coord_mask = torch.zeros(nB, nA, nH, nW, requires_grad=False)
conf_mask = (
torch.ones(nB, nA, nH, nW, requires_grad=False) * self.noobject_scale
)
if torchversion >= version120:
cls_mask = torch.zeros(
nB, nA, nH, nW, dtype=torch.bool, requires_grad=False
)
else:
cls_mask = torch.zeros(nB, nA, nH, nW, requires_grad=False).byte()
tcoord = torch.zeros(nB, nA, 4, nH, nW, requires_grad=False)
tconf = torch.zeros(nB, nA, nH, nW, requires_grad=False)
tcls = torch.zeros(nB, nA, nH, nW, requires_grad=False)
if self.training and self.seen < self.coord_prefill:
coord_mask.fill_(math.sqrt(0.01 / self.coord_scale))
if self.anchor_step == 4:
tcoord[:, :, 0] = (
self.anchors[:, 2]
.contiguous()
.view(1, nA, 1, 1)
.repeat(nB, 1, 1, nPixels)
)
tcoord[:, :, 1] = (
self.anchors[:, 3]
.contiguous()
.view(1, nA, 1, 1)
.repeat(nB, 1, 1, nPixels)
)
else:
tcoord[:, :, 0].fill_(0.5)
tcoord[:, :, 1].fill_(0.5)
# Anchors
if self.anchor_step == 4:
anchors = self.anchors.clone()
anchors[:, :2] = 0
else:
anchors = torch.cat([torch.zeros_like(self.anchors), self.anchors], 1)
# Loop over GT
for b, gt_filtered in ground_truth.groupby("batch_number", sort=False):
cur_pred_boxes = pred_boxes[b * nAnchors : (b + 1) * nAnchors]
# Create ground_truth tensor
gt = torch.empty((gt_filtered.shape[0], 4), requires_grad=False)
gt[:, 2] = torch.from_numpy(gt_filtered.width.values).float() / self.stride
gt[:, 3] = torch.from_numpy(gt_filtered.height.values).float() / self.stride
gt[:, 0] = torch.from_numpy(
gt_filtered.x_top_left.values
).float() / self.stride + (gt[:, 2] / 2)
gt[:, 1] = torch.from_numpy(
gt_filtered.y_top_left.values
).float() / self.stride + (gt[:, 3] / 2)
# Set confidence mask of matching detections to 0
iou_gt_pred = bbox_ious(gt, cur_pred_boxes)
mask = (iou_gt_pred > self.thresh).sum(0) >= 1
conf_mask[b][mask.view_as(conf_mask[b])] = 0
# Find best anchor for each gt
iou_gt_anchors = bbox_wh_ious(gt, anchors)
_, best_anchors = iou_gt_anchors.max(1)
# Set masks and target values for each gt
nGT = gt.shape[0]
gi = gt[:, 0].clamp(0, nW - 1).long()
gj = gt[:, 1].clamp(0, nH - 1).long()
conf_mask[b, best_anchors, gj, gi] = self.object_scale
tconf[b, best_anchors, gj, gi] = iou_gt_pred.view(nGT, nA, nH, nW)[
torch.arange(nGT), best_anchors, gj, gi
]
coord_mask[b, best_anchors, gj, gi] = 2 - (gt[:, 2] * gt[:, 3]) / nPixels
tcoord[b, best_anchors, 0, gj, gi] = gt[:, 0] - gi.float()
tcoord[b, best_anchors, 1, gj, gi] = gt[:, 1] - gj.float()
tcoord[b, best_anchors, 2, gj, gi] = (
gt[:, 2] / self.anchors[best_anchors, 0]
).log()
tcoord[b, best_anchors, 3, gj, gi] = (
gt[:, 3] / self.anchors[best_anchors, 1]
).log()
cls_mask[b, best_anchors, gj, gi] = 1
tcls[b, best_anchors, gj, gi] = torch.from_numpy(
gt_filtered.class_id.values
).float()
# Set masks of ignored to zero
if gt_filtered.ignore.any():
if torchversion >= version120:
ignore_mask = torch.from_numpy(gt_filtered.ignore.values)
else:
ignore_mask = torch.from_numpy(
gt_filtered.ignore.values.astype(np.uint8)
)
gi = gi[ignore_mask]
gj = gj[ignore_mask]
best_anchors = best_anchors[ignore_mask]
conf_mask[b, best_anchors, gj, gi] = 0
coord_mask[b, best_anchors, gj, gi] = 0
cls_mask[b, best_anchors, gj, gi] = 0
return (
coord_mask.view(nB, nA, 1, nPixels),
conf_mask.view(nB, nA, nPixels),
cls_mask.view(nB, nA, nPixels),
tcoord.view(nB, nA, 4, nPixels),
tconf.view(nB, nA, nPixels),
tcls.view(nB, nA, nPixels),
)
def bbox_ious(boxes1, boxes2):
"""Compute IOU between all boxes from ``boxes1`` with all boxes from ``boxes2``.
Args:
boxes1 (torch.Tensor): List of bounding boxes
boxes2 (torch.Tensor): List of bounding boxes
Returns:
torch.Tensor[len(boxes1) X len(boxes2)]: IOU values
Note:
Tensor format: [[xc, yc, w, h],...]
"""
b1x1, b1y1 = (boxes1[:, :2] - (boxes1[:, 2:4] / 2)).split(1, 1)
b1x2, b1y2 = (boxes1[:, :2] + (boxes1[:, 2:4] / 2)).split(1, 1)
b2x1, b2y1 = (boxes2[:, :2] - (boxes2[:, 2:4] / 2)).split(1, 1)
b2x2, b2y2 = (boxes2[:, :2] + (boxes2[:, 2:4] / 2)).split(1, 1)
dx = (b1x2.min(b2x2.t()) - b1x1.max(b2x1.t())).clamp(min=0)
dy = (b1y2.min(b2y2.t()) - b1y1.max(b2y1.t())).clamp(min=0)
intersections = dx * dy
areas1 = (b1x2 - b1x1) * (b1y2 - b1y1)
areas2 = (b2x2 - b2x1) * (b2y2 - b2y1)
unions = (areas1 + areas2.t()) - intersections
return intersections / unions
def bbox_wh_ious(boxes1, boxes2):
"""Shorter version of :func:`lightnet.network.loss._regionloss.bbox_ious`
for when we are only interested in W/H of the bounding boxes and not X/Y.
Args:
boxes1 (torch.Tensor): List of bounding boxes
boxes2 (torch.Tensor): List of bounding boxes
Returns:
torch.Tensor[len(boxes1) X len(boxes2)]: IOU values when discarding X/Y offsets (aka. as if they were zero)
Note:
Tensor format: [[xc, yc, w, h],...]
"""
b1w = boxes1[:, 2].unsqueeze(1)
b1h = boxes1[:, 3].unsqueeze(1)
b2w = boxes2[:, 2]
b2h = boxes2[:, 3]
intersections = b1w.min(b2w) * b1h.min(b2h)
unions = (b1w * b1h) + (b2w * b2h) - intersections
return intersections / unions