-
Aaron Councilman authoredAaron Councilman authored
utils.rs 13.47 KiB
use std::iter::zip;
use hercules_ir::def_use::*;
use hercules_ir::ir::*;
use crate::*;
/*
* Substitute all uses of a dynamic constant A with dynamic constant B in a
* type. Return the substituted version of the type, once memozied.
*/
pub(crate) fn substitute_dynamic_constants_in_type(
dc_a: DynamicConstantID,
dc_b: DynamicConstantID,
ty: TypeID,
edit: &mut FunctionEdit,
) -> TypeID {
// Look inside the type for references to dynamic constants.
let ty_clone = edit.get_type(ty).clone();
match ty_clone {
Type::Product(ref fields) => {
let new_fields = fields
.into_iter()
.map(|field_id| substitute_dynamic_constants_in_type(dc_a, dc_b, *field_id, edit))
.collect();
if new_fields != *fields {
edit.add_type(Type::Product(new_fields))
} else {
ty
}
}
Type::Summation(ref variants) => {
let new_variants = variants
.into_iter()
.map(|variant_id| {
substitute_dynamic_constants_in_type(dc_a, dc_b, *variant_id, edit)
})
.collect();
if new_variants != *variants {
edit.add_type(Type::Summation(new_variants))
} else {
ty
}
}
Type::Array(elem_ty, ref dims) => {
let new_elem_ty = substitute_dynamic_constants_in_type(dc_a, dc_b, elem_ty, edit);
let new_dims = dims
.into_iter()
.map(|dim_id| substitute_dynamic_constants(dc_a, dc_b, *dim_id, edit))
.collect();
if new_elem_ty != elem_ty || new_dims != *dims {
edit.add_type(Type::Array(new_elem_ty, new_dims))
} else {
ty
}
}
_ => ty,
}
}
/*
* Substitute all uses of a dynamic constant A with dynamic constant B in a
* dynamic constant C. Return the substituted version of C, once memoized. Takes
* a mutable edit instead of an editor since this may create new dynamic
* constants, which can only be done inside an edit.
*/
pub(crate) fn substitute_dynamic_constants(
dc_a: DynamicConstantID,
dc_b: DynamicConstantID,
dc_c: DynamicConstantID,
edit: &mut FunctionEdit,
) -> DynamicConstantID {
// If C is just A, then just replace all of C with B.
if dc_a == dc_c {
return dc_b;
}
// Since we substitute non-sense dynamic constant IDs earlier, we explicitly
// check that the provided ID to replace inside of is valid. Otherwise,
// ignore.
if dc_c.idx() >= edit.num_dynamic_constants() {
return dc_c;
}
// If C is not just A, look inside of it to possibly substitute a child DC.
let dc_clone = edit.get_dynamic_constant(dc_c).clone();
match dc_clone {
DynamicConstant::Constant(_) | DynamicConstant::Parameter(_) => dc_c,
// This is a certified Rust moment.
DynamicConstant::Add(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Add(new_left, new_right))
} else {
dc_c
}
}
DynamicConstant::Sub(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Sub(new_left, new_right))
} else {
dc_c
}
}
DynamicConstant::Mul(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Mul(new_left, new_right))
} else {
dc_c
}
}
DynamicConstant::Div(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Div(new_left, new_right))
} else {
dc_c
}
}
DynamicConstant::Rem(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Rem(new_left, new_right))
} else {
dc_c
}
}
DynamicConstant::Min(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Min(new_left, new_right))
} else {
dc_c
}
}
DynamicConstant::Max(left, right) => {
let new_left = substitute_dynamic_constants(dc_a, dc_b, left, edit);
let new_right = substitute_dynamic_constants(dc_a, dc_b, right, edit);
if new_left != left || new_right != right {
edit.add_dynamic_constant(DynamicConstant::Max(new_left, new_right))
} else {
dc_c
}
}
}
}
/*
* Substitute all uses of a dynamic constant A with dynamic constant B in a
* constant. Return the substituted version of the constant, once memozied.
*/
pub(crate) fn substitute_dynamic_constants_in_constant(
dc_a: DynamicConstantID,
dc_b: DynamicConstantID,
cons: ConstantID,
edit: &mut FunctionEdit,
) -> ConstantID {
// Look inside the type for references to dynamic constants.
let cons_clone = edit.get_constant(cons).clone();
match cons_clone {
Constant::Product(ty, fields) => {
let new_ty = substitute_dynamic_constants_in_type(dc_a, dc_b, ty, edit);
let new_fields = fields
.iter()
.map(|field_id| {
substitute_dynamic_constants_in_constant(dc_a, dc_b, *field_id, edit)
})
.collect();
if new_ty != ty || new_fields != fields {
edit.add_constant(Constant::Product(new_ty, new_fields))
} else {
cons
}
}
Constant::Summation(ty, idx, variant) => {
let new_ty = substitute_dynamic_constants_in_type(dc_a, dc_b, ty, edit);
let new_variant = substitute_dynamic_constants_in_constant(dc_a, dc_b, variant, edit);
if new_ty != ty || new_variant != variant {
edit.add_constant(Constant::Summation(new_ty, idx, new_variant))
} else {
cons
}
}
Constant::Array(ty) => {
let new_ty = substitute_dynamic_constants_in_type(dc_a, dc_b, ty, edit);
if new_ty != ty {
edit.add_constant(Constant::Array(new_ty))
} else {
cons
}
}
_ => cons,
}
}
/*
* Substitute all uses of a dynamic constant A with dynamic constant B in a
* node.
*/
pub(crate) fn substitute_dynamic_constants_in_node(
dc_a: DynamicConstantID,
dc_b: DynamicConstantID,
node: &mut Node,
edit: &mut FunctionEdit,
) {
match node {
Node::Fork {
control: _,
factors,
} => {
for factor in factors.into_iter() {
*factor = substitute_dynamic_constants(dc_a, dc_b, *factor, edit);
}
}
Node::Constant { id } => {
*id = substitute_dynamic_constants_in_constant(dc_a, dc_b, *id, edit);
}
Node::DynamicConstant { id } => {
*id = substitute_dynamic_constants(dc_a, dc_b, *id, edit);
}
Node::Call {
control: _,
function: _,
dynamic_constants,
args: _,
} => {
for dc_arg in dynamic_constants.into_iter() {
*dc_arg = substitute_dynamic_constants(dc_a, dc_b, *dc_arg, edit);
}
}
_ => {}
}
}
/*
* Top level function to make a function have only a single return.
*/
pub fn collapse_returns(editor: &mut FunctionEditor) -> Option<NodeID> {
let returns: Vec<NodeID> = (0..editor.func().nodes.len())
.filter(|idx| editor.func().nodes[*idx].is_return())
.map(NodeID::new)
.collect();
assert!(!returns.is_empty());
if returns.len() == 1 {
return Some(returns[0]);
}
let preds_before_returns: Vec<NodeID> = returns
.iter()
.map(|ret_id| get_uses(&editor.func().nodes[ret_id.idx()]).as_ref()[0])
.collect();
let data_to_return: Vec<NodeID> = returns
.iter()
.map(|ret_id| get_uses(&editor.func().nodes[ret_id.idx()]).as_ref()[1])
.collect();
// All of the old returns get replaced in a single edit.
let mut new_return = None;
editor.edit(|mut edit| {
let region = edit.add_node(Node::Region {
preds: preds_before_returns.into_boxed_slice(),
});
let phi = edit.add_node(Node::Phi {
control: region,
data: data_to_return.into_boxed_slice(),
});
for ret in returns {
edit = edit.delete_node(ret)?;
}
new_return = Some(edit.add_node(Node::Return {
control: region,
data: phi,
}));
Ok(edit)
});
new_return
}
pub(crate) fn contains_between_control_flow(func: &Function) -> bool {
let num_control = func.nodes.iter().filter(|node| node.is_control()).count();
assert!(num_control >= 2, "PANIC: A Hercules function must have at least two control nodes: a start node and at least one return node.");
num_control > 2
}
/*
* Top level function to ensure a Hercules function contains at least one
* control node that isn't the start or return nodes.
*/
pub fn ensure_between_control_flow(editor: &mut FunctionEditor) -> Option<NodeID> {
if !contains_between_control_flow(editor.func()) {
let ret = editor
.node_ids()
.skip(1)
.filter(|id| editor.func().nodes[id.idx()].is_control())
.next()
.unwrap();
let Node::Return { control, data } = editor.func().nodes[ret.idx()] else {
panic!("PANIC: A Hercules function with only two control nodes must have a return node be the other control node, other than the start node.")
};
assert_eq!(control, NodeID::new(0), "PANIC: The only other control node in a Hercules function, the return node, is not using the start node.");
let mut region_id = None;
editor.edit(|mut edit| {
edit = edit.delete_node(ret)?;
region_id = Some(edit.add_node(Node::Region {
preds: Box::new([NodeID::new(0)]),
}));
edit.add_node(Node::Return {
control: region_id.unwrap(),
data,
});
Ok(edit)
});
region_id
} else {
Some(
editor
.get_users(NodeID::new(0))
.filter(|id| editor.func().nodes[id.idx()].is_control())
.next()
.unwrap(),
)
}
}
/*
* Helper function to tell if two lists of indices have the same structure.
*/
pub(crate) fn indices_structurally_equivalent(indices1: &[Index], indices2: &[Index]) -> bool {
if indices1.len() == indices2.len() {
let mut equiv = true;
for pair in zip(indices1, indices2) {
equiv = equiv
&& match pair {
(Index::Field(idx1), Index::Field(idx2)) => idx1 == idx2,
(Index::Variant(idx1), Index::Variant(idx2)) => idx1 == idx2,
(Index::Position(ref pos1), Index::Position(ref pos2)) => {
assert_eq!(pos1.len(), pos2.len());
true
}
_ => false,
};
}
equiv
} else {
false
}
}
/*
* Helper function to determine if two lists of indices may overlap.
*/
pub(crate) fn indices_may_overlap(indices1: &[Index], indices2: &[Index]) -> bool {
for pair in zip(indices1, indices2) {
match pair {
// Check that the field numbers are the same.
(Index::Field(idx1), Index::Field(idx2)) => {
if idx1 != idx2 {
return false;
}
}
// Variant indices always may overlap, since it's the same
// underlying memory. Position indices always may overlap, since the
// indexing nodes may be the same at runtime.
(Index::Variant(_), Index::Variant(_)) | (Index::Position(_), Index::Position(_)) => {}
_ => panic!(),
}
}
// `zip` will exit as soon as either iterator is done - two sets of indices
// may overlap when one indexes a larger sub-value than the other.
true
}