Newer
Older
use std::collections::{HashMap, HashSet};
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
use bimap::BiMap;
use itertools::Itertools;
use hercules_ir::*;
use crate::*;
type ForkID = usize;
/** Places each reduce node into its own fork */
pub fn default_reduce_partition(
editor: &FunctionEditor,
_fork: NodeID,
join: NodeID,
) -> SparseNodeMap<ForkID> {
let mut map = SparseNodeMap::new();
editor
.get_users(join)
.filter(|id| editor.func().nodes[id.idx()].is_reduce())
.enumerate()
.for_each(|(fork, reduce)| {
map.insert(reduce, fork);
});
map
}
// TODO: Refine these conditions.
/** */
pub fn find_reduce_dependencies<'a>(
function: &'a Function,
reduce: NodeID,
fork: NodeID,
) -> impl IntoIterator<Item = NodeID> + 'a {
let len = function.nodes.len();
let mut visited: DenseNodeMap<bool> = vec![false; len];
let mut depdendent: DenseNodeMap<bool> = vec![false; len];
// Does `fork` need to be a parameter here? It never changes. If this was a closure could it just capture it?
fn recurse(
function: &Function,
node: NodeID,
fork: NodeID,
dependent_map: &mut DenseNodeMap<bool>,
visited: &mut DenseNodeMap<bool>,
) -> () {
// return through dependent_map {
if visited[node.idx()] {
return;
}
visited[node.idx()] = true;
if node == fork {
dependent_map[node.idx()] = true;
return;
}
let binding = get_uses(&function.nodes[node.idx()]);
let uses = binding.as_ref();
for used in uses {
recurse(function, *used, fork, dependent_map, visited);
}
dependent_map[node.idx()] = uses.iter().map(|id| dependent_map[id.idx()]).any(|a| a);
return;
}
// Note: HACKY, the condition wwe want is 'all nodes on any path from the fork to the reduce (in the forward graph), or the reduce to the fork (in the directed graph)
// cycles break this, but we assume for now that the only cycles are ones that involve the reduce node
// NOTE: (control may break this (i.e loop inside fork) is a cycle that isn't the reduce)
// the current solution is just to mark the reduce as dependent at the start of traversing the graph.
depdendent[reduce.idx()] = true;
recurse(function, reduce, fork, &mut depdendent, &mut visited);
// Return node IDs that are dependent
let ret_val: Vec<_> = depdendent
.iter()
.enumerate()
.filter_map(|(idx, dependent)| {
if *dependent {
Some(NodeID::new(idx))
} else {
None
}
})
.collect();
ret_val
}
pub fn copy_subgraph_in_edit<'a, 'b>(
mut edit: FunctionEdit<'a, 'b>,
subgraph: HashSet<NodeID>,
) -> Result<(FunctionEdit<'a, 'b>, HashMap<NodeID, NodeID>), FunctionEdit<'a, 'b>> {
let mut map: HashMap<NodeID, NodeID> = HashMap::new();
// Copy nodes in subgraph
for old_id in subgraph.iter().cloned() {
let new_id = edit.copy_node(old_id);
map.insert(old_id, new_id);
}
// Update edges to new nodes
for old_id in subgraph.iter() {
edit = edit.replace_all_uses_where(*old_id, map[old_id], |node_id| {
map.values().contains(node_id)
})?;
}
Ok((edit, map))
}
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
pub fn copy_subgraph(
editor: &mut FunctionEditor,
subgraph: HashSet<NodeID>,
) -> (
HashSet<NodeID>,
HashMap<NodeID, NodeID>,
Vec<(NodeID, NodeID)>,
) // returns all new nodes, a map from old nodes to new nodes, and
// a vec of pairs of nodes (old node, outside node) s.t old node -> outside node,
// outside means not part of the original subgraph.
{
let mut map: HashMap<NodeID, NodeID> = HashMap::new();
let mut new_nodes: HashSet<NodeID> = HashSet::new();
// Copy nodes
for old_id in subgraph.iter() {
editor.edit(|mut edit| {
let new_id = edit.copy_node(*old_id);
map.insert(*old_id, new_id);
new_nodes.insert(new_id);
Ok(edit)
});
}
// Update edges to new nodes
for old_id in subgraph.iter() {
// Replace all uses of old_id w/ new_id, where the use is in new_node
editor.edit(|edit| {
edit.replace_all_uses_where(*old_id, map[old_id], |node_id| new_nodes.contains(node_id))
});
}
// Get all users that aren't in new_nodes.
let mut outside_users = Vec::new();
for node in new_nodes.iter() {
for user in editor.get_users(*node) {
if !new_nodes.contains(&user) {
outside_users.push((*node, user));
}
}
}
(new_nodes, map, outside_users)
}
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
pub fn find_bufferize_edges(
editor: &mut FunctionEditor,
fork: NodeID,
loop_tree: &LoopTree,
fork_join_map: &HashMap<NodeID, NodeID>,
nodes_in_fork_joins: &HashMap<NodeID, HashSet<NodeID>>,
data_label: &LabelID,
) -> HashSet<(NodeID, NodeID)> {
let mut edges: HashSet<_> = HashSet::new();
for node in &nodes_in_fork_joins[&fork] {
// Edge from *has data label** to doesn't have data label*
let node_labels = &editor.func().labels[node.idx()];
if !node_labels.contains(data_label) {
continue;
}
// Don't draw bufferize edges from fork tids
if editor.get_users(fork).contains(node) {
continue;
}
for user in editor.get_users(*node) {
let user_labels = &editor.func().labels[user.idx()];
if user_labels.contains(data_label) {
continue;
}
if editor.node(user).is_control() || editor.node(node).is_control() {
continue;
}
edges.insert((*node, user));
}
}
edges
}
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
pub fn ff_bufferize_create_not_reduce_cycle_label_helper(
editor: &mut FunctionEditor,
fork: NodeID,
fork_join_map: &HashMap<NodeID, NodeID>,
reduce_cycles: &HashMap<NodeID, HashSet<NodeID>>,
nodes_in_fork_joins: &HashMap<NodeID, HashSet<NodeID>>,
) -> LabelID {
let join = fork_join_map[&fork];
let mut nodes_not_in_a_reduce_cycle = nodes_in_fork_joins[&fork].clone();
for (cycle, reduce) in editor
.get_users(join)
.filter_map(|id| reduce_cycles.get(&id).map(|cycle| (cycle, id)))
{
nodes_not_in_a_reduce_cycle.remove(&reduce);
for id in cycle {
nodes_not_in_a_reduce_cycle.remove(id);
}
}
nodes_not_in_a_reduce_cycle.remove(&join);
let mut label = LabelID::new(0);
let success = editor.edit(|mut edit| {
label = edit.fresh_label();
for id in nodes_not_in_a_reduce_cycle {
edit = edit.add_label(id, label)?;
}
Ok(edit)
});
assert!(success);
label
}
pub fn ff_bufferize_any_fork<'a, 'b>(
editor: &'b mut FunctionEditor<'a>,
loop_tree: &'b LoopTree,
fork_join_map: &'b HashMap<NodeID, NodeID>,
nodes_in_fork_joins: &'b HashMap<NodeID, HashSet<NodeID>>,
typing: &'b Vec<TypeID>,
) -> Option<(NodeID, NodeID)>
where
'a: 'b,
{
.bottom_up_loops()
.into_iter()
.filter(|(k, _)| editor.func().nodes[k.idx()].is_fork())
.collect();
for l in forks {
let fork_info = Loop {
header: l.0,
control: l.1.clone(),
};
let fork = fork_info.header;
let join = fork_join_map[&fork];
let data_label = data_label.unwrap_or_else(|| {
ff_bufferize_create_not_reduce_cycle_label_helper(
editor,
fork,
fork_join_map,
reduce_cycles,
nodes_in_fork_joins,
)
});
let edges = find_bufferize_edges(
editor,
fork,
&loop_tree,
&fork_join_map,
&nodes_in_fork_joins,
);
let result = fork_bufferize_fission_helper(
editor,
&fork_info,
&edges,
nodes_in_fork_joins,
typing,
fork,
join,
);
if result.is_none() {
continue;
} else {
return result;
}
}
return None;
}
pub fn fork_fission<'a>(
editor: &'a mut FunctionEditor,
nodes_in_fork_joins: &HashMap<NodeID, HashSet<NodeID>>,
reduce_cycles: &HashMap<NodeID, HashSet<NodeID>>,
loop_tree: &LoopTree,
fork_join_map: &HashMap<NodeID, NodeID>,
fork_label: LabelID,
) -> Vec<NodeID> {
let forks: Vec<_> = loop_tree
.bottom_up_loops()
.into_iter()
.filter(|(k, _)| editor.func().nodes[k.idx()].is_fork())
// FIXME: Don't make multiple forks for reduces that are in cycles with each other.
let reduce_partition = default_reduce_partition(editor, fork.0, join);
if !editor.func().labels[fork.0.idx()].contains(&fork_label) {
continue;
created_forks = fork_reduce_fission_helper(
editor,
fork_join_map,
reduce_partition,
nodes_in_fork_joins,
fork.0,
);
if created_forks.is_empty() {
continue;
} else {
return created_forks;
}
}
}
/** Split a 1D fork into two forks, placing select intermediate data into buffers. */
pub fn fork_bufferize_fission_helper<'a, 'b>(
editor: &'b mut FunctionEditor<'a>,
l: &Loop,
bufferized_edges: &HashSet<(NodeID, NodeID)>, // Describes what intermediate data should be bufferized.
data_node_in_fork_joins: &'b HashMap<NodeID, HashSet<NodeID>>,
types: &'b Vec<TypeID>,
join: NodeID,
) -> Option<(NodeID, NodeID)>
where
'a: 'b,
{
if bufferized_edges.is_empty() {
return None;
}
// FIXME: Cloning hell.
let data_nodes = data_node_in_fork_joins[&fork].clone();
let loop_nodes = editor
.node_ids()
.filter(|node_id| all_loop_nodes[node_id.idx()]);
// Clone the subgraph that consists of this fork-join and all data and control nodes in it.
let subgraph = HashSet::from_iter(data_nodes.into_iter().chain(loop_nodes));
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
let mut outside_users = Vec::new(); // old_node, outside_user
for node in subgraph.iter() {
for user in editor.get_users(*node) {
if !subgraph.iter().contains(&user) {
outside_users.push((*node, user));
}
}
}
let factors: Vec<_> = editor.func().nodes[fork.idx()]
.try_fork()
.unwrap()
.1
.iter()
.cloned()
.collect();
let thread_stuff_it = factors.into_iter().enumerate();
// Control succesors
let fork_pred = editor
.get_uses(fork)
.filter(|a| editor.node(a).is_control())
.next()
.unwrap();
let join_successor = editor
.get_users(join)
.filter(|a| editor.node(a).is_control())
.next()
.unwrap();
let mut new_fork_id = NodeID::new(0);
let edit_result = editor.edit(|edit| {
let (mut edit, map) = copy_subgraph_in_edit(edit, subgraph)?;
edit = edit.replace_all_uses_where(fork_pred, join, |a| *a == map[&fork])?;
edit = edit.replace_all_uses_where(join, map[&join], |a| *a == join_successor)?;
// Replace outside uses of reduces in old subgraph with reduces in new subgraph.
for (old_node, outside_user) in outside_users {
edit = edit
.replace_all_uses_where(old_node, map[&old_node], |node| *node == outside_user)?;
}
// FIXME: Do this as part of copy subgraph?
// Add tids to original subgraph for indexing.
let mut old_tids = Vec::new();
let mut new_tids = Vec::new();
for (dim, _) in thread_stuff_it.clone() {
let old_id = edit.add_node(Node::ThreadID {
control: fork,
dimension: dim,
let new_id = edit.add_node(Node::ThreadID {
control: new_fork,
dimension: dim,
});
old_tids.push(old_id);
new_tids.push(new_id);
}
for (src, dst) in bufferized_edges {
let array_dims = thread_stuff_it.clone().map(|(_, factor)| (factor));
let position_idx = Index::Position(old_tids.clone().into_boxed_slice());
let write = edit.add_node(Node::Write {
collect: NodeID::new(0),
data: *src,
indices: vec![position_idx.clone()].into(),
});
let ele_type = types[src.idx()];
let empty_buffer = edit.add_type(hercules_ir::Type::Array(
ele_type,
array_dims.collect::<Vec<_>>().into_boxed_slice(),
));
let empty_buffer = edit.add_zero_constant(empty_buffer);
let empty_buffer = edit.add_node(Node::Constant { id: empty_buffer });
edit = edit.add_schedule(empty_buffer, Schedule::NoResetConstant)?;
let reduce = Node::Reduce {
init: empty_buffer,
reduct: write,
};
let reduce = edit.add_node(reduce);
edit = edit.add_schedule(reduce, Schedule::ParallelReduce)?;
// Fix write node
edit = edit.replace_all_uses_where(NodeID::new(0), reduce, |usee| *usee == write)?;
// Create reads from buffer
let position_idx = Index::Position(new_tids.clone().into_boxed_slice());
let read = edit.add_node(Node::Read {
collect: reduce,
indices: vec![position_idx].into(),
});
// Replaces uses of bufferized edge src with corresponding reduce and read in old subraph
edit = edit.replace_all_uses_where(map[src], read, |usee| *usee == map[dst])?;
}
Ok(edit)
});
if edit_result {
Some((fork, new_fork_id))
} else {
None
}
/** Split a fork into a separate fork for each reduction. */
pub fn fork_reduce_fission_helper<'a>(
editor: &'a mut FunctionEditor,
fork_join_map: &HashMap<NodeID, NodeID>,
reduce_partition: SparseNodeMap<ForkID>, // Describes how the reduces of the fork should be split,
let join = fork_join_map[&fork];
let mut new_control_pred: NodeID = editor
.get_uses(fork)
.filter(|n| editor.node(n).is_control())
.next()
.unwrap();
let mut new_fork = NodeID::new(0);
let mut new_join = NodeID::new(0);
// Gets everything between fork & join that this reduce needs. (ALL CONTROL)
editor.edit(|mut edit| {
for reduce in reduce_partition {
let reduce = reduce.0;
let a = copy_subgraph_in_edit(edit, subgraph.clone())?;
edit = a.0;
let mapping = a.1;
new_fork = mapping[&fork];
new_forks.push(new_fork);
new_join = mapping[&join];
// Atttach new_fork after control_pred
let (old_control_pred, _) = edit.get_node(new_fork).try_fork().unwrap().clone();
edit = edit.replace_all_uses_where(old_control_pred, new_control_pred, |usee| {
*usee == new_fork
})?;
// Replace uses of reduce
edit = edit.replace_all_uses(reduce, mapping[&reduce])?;
// Replace original join w/ new final join
edit = edit.replace_all_uses_where(join, new_join, |_| true)?;
// Delete original join (all reduce users have been moved)
edit = edit.delete_node(join)?;
// Replace all users of original fork, and then delete it, leftover users will be DCE'd.
edit = edit.replace_all_uses(fork, new_fork)?;
}
pub fn fork_coalesce(
editor: &mut FunctionEditor,
loops: &LoopTree,
fork_join_map: &HashMap<NodeID, NodeID>,
) -> bool {
let fork_joins = loops.bottom_up_loops().into_iter().filter_map(|(k, _)| {
if editor.func().nodes[k.idx()].is_fork() {
Some(k)
} else {
None
}
});
let fork_joins: Vec<_> = fork_joins.collect();
// FIXME: Add a postorder traversal to optimize this.
// FIXME: This could give us two forks that aren't actually ancestors / related, but then the helper will just return false early.
// something like: `fork_joins.postorder_iter().windows(2)` is ideal here.
for (inner, outer) in fork_joins.iter().cartesian_product(fork_joins.iter()) {
if fork_coalesce_helper(editor, *outer, *inner, fork_join_map).is_some() {
return true;
}
}
return false;
}
/** Opposite of fork split, takes two fork-joins
with no control between them, and merges them into a single fork-join.
Returns None if the forks could not be merged and the NodeIDs of the
resulting fork and join if it succeeds in merging them.
*/
pub fn fork_coalesce_helper(
editor: &mut FunctionEditor,
outer_fork: NodeID,
inner_fork: NodeID,
fork_join_map: &HashMap<NodeID, NodeID>,
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// Check that all reduces in the outer fork are in *simple* cycles with a unique reduce of the inner fork.
let outer_join = fork_join_map[&outer_fork];
let inner_join = fork_join_map[&inner_fork];
let mut pairs: BiMap<NodeID, NodeID> = BiMap::new(); // Outer <-> Inner
// FIXME: Iterate all control uses of joins to really collect all reduces
// (reduces can be attached to inner control)
for outer_reduce in editor
.get_users(outer_join)
.filter(|node| editor.func().nodes[node.idx()].is_reduce())
{
// check that inner reduce is of the inner join
let (_, _, outer_reduct) = editor.func().nodes[outer_reduce.idx()]
.try_reduce()
.unwrap();
let inner_reduce = outer_reduct;
let inner_reduce_node = &editor.func().nodes[outer_reduct.idx()];
let Node::Reduce {
control: inner_control,
init: inner_init,
reduct: _,
} = inner_reduce_node
else {
};
// FIXME: check this condition better (i.e reduce might not be attached to join)
if *inner_control != inner_join {
};
if *inner_init != outer_reduce {
};
if pairs.contains_left(&outer_reduce) || pairs.contains_right(&inner_reduce) {
} else {
pairs.insert(outer_reduce, inner_reduce);
}
}
// Check for control between join-join and fork-fork
let (control, _) = editor.node(inner_fork).try_fork().unwrap();
let control = editor.node(outer_join).try_join().unwrap();
}
// Checklist:
// Increment inner TIDs
// Add outer fork's dimension to front of inner fork.
// Fuse reductions
// - Initializer becomes outer initializer
// Replace uses of outer fork w/ inner fork.
// Replace uses of outer join w/ inner join.
// Delete outer fork-join
let inner_tids: Vec<NodeID> = editor
.get_users(inner_fork)
.filter(|node| editor.func().nodes[node.idx()].is_thread_id())
.collect();
let (outer_pred, outer_dims) = editor.func().nodes[outer_fork.idx()].try_fork().unwrap();
let (_, inner_dims) = editor.func().nodes[inner_fork.idx()].try_fork().unwrap();
let num_outer_dims = outer_dims.len();
let mut new_factors = outer_dims.to_vec();
// CHECKME / FIXME: Might need to be added the other way.
new_factors.append(&mut inner_dims.to_vec());
let mut new_fork = NodeID::new(0);
let new_join = inner_join; // We'll reuse the inner join as the join of the new fork
let success = editor.edit(|mut edit| {
for tid in inner_tids {
let (fork, dim) = edit.get_node(tid).try_thread_id().unwrap();
let new_tid = Node::ThreadID {
control: fork,
dimension: dim + num_outer_dims,
};
let new_tid = edit.add_node(new_tid);
}
// Fuse Reductions
for (outer_reduce, inner_reduce) in pairs {
let (_, outer_init, _) = edit.get_node(outer_reduce).try_reduce().unwrap();
let (_, inner_init, _) = edit.get_node(inner_reduce).try_reduce().unwrap();
// Set inner init to outer init.
edit =
edit.replace_all_uses_where(inner_init, outer_init, |usee| *usee == inner_reduce)?;
edit = edit.replace_all_uses(outer_reduce, inner_reduce)?;
edit = edit.delete_node(outer_reduce)?;
control: outer_pred,
factors: new_factors.into(),
};
new_fork = edit.add_node(new_fork_node);
if edit
.get_schedule(outer_fork)
.contains(&Schedule::ParallelFork)
&& edit
.get_schedule(inner_fork)
.contains(&Schedule::ParallelFork)
{
edit = edit.add_schedule(new_fork, Schedule::ParallelFork)?;
}
edit = edit.replace_all_uses(inner_fork, new_fork)?;
edit = edit.replace_all_uses(outer_fork, new_fork)?;
edit = edit.replace_all_uses(outer_join, inner_join)?;
edit = edit.delete_node(outer_join)?;
edit = edit.delete_node(inner_fork)?;
edit = edit.delete_node(outer_fork)?;
Ok(edit)
});
if success {
Some((new_fork, new_join))
} else {
None
}
editor: &mut FunctionEditor,
fork_join_map: &HashMap<NodeID, NodeID>,
reduce_cycles: &HashMap<NodeID, HashSet<NodeID>>,
) -> Option<(Vec<NodeID>, Vec<NodeID>)> {
for (fork, join) in fork_join_map {
if let Some((forks, joins)) = split_fork(editor, *fork, *join, reduce_cycles)
&& forks.len() > 1
{
}
/*
* Split multi-dimensional fork-joins into separate one-dimensional fork-joins.
* Useful for code generation. A single iteration of `fork_split` only splits
* at most one fork-join, it must be called repeatedly to split all fork-joins.
*/
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
editor: &mut FunctionEditor,
fork: NodeID,
join: NodeID,
reduce_cycles: &HashMap<NodeID, HashSet<NodeID>>,
) -> Option<(Vec<NodeID>, Vec<NodeID>)> {
// A single multi-dimensional fork becomes multiple forks, a join becomes
// multiple joins, a thread ID becomes a thread ID on the correct
// fork, and a reduce becomes multiple reduces to shuffle the reduction
// value through the fork-join nest.
let nodes = &editor.func().nodes;
let (fork_control, factors) = nodes[fork.idx()].try_fork().unwrap();
if factors.len() < 2 {
return Some((vec![fork], vec![join]));
}
let factors: Box<[DynamicConstantID]> = factors.into();
let join_control = nodes[join.idx()].try_join().unwrap();
let tids: Vec<_> = editor
.get_users(fork)
.filter(|id| nodes[id.idx()].is_thread_id())
.collect();
let reduces: Vec<_> = editor
.get_users(join)
.filter(|id| nodes[id.idx()].is_reduce())
.collect();
let data_in_reduce_cycle: HashSet<(NodeID, NodeID)> = reduces
.iter()
.map(|reduce| editor.get_users(*reduce).map(move |user| (user, *reduce)))
.flatten()
.filter(|(user, reduce)| reduce_cycles[&reduce].contains(&user))
.collect();
let mut new_forks = vec![];
let mut new_joins = vec![];
let success = editor.edit(|mut edit| {
// Create the forks and a thread ID per fork.
let mut acc_fork = fork_control;
let mut new_tids = vec![];
for factor in factors {
acc_fork = edit.add_node(Node::Fork {
control: acc_fork,
factors: Box::new([factor]),
});
new_forks.push(acc_fork);
edit.sub_edit(fork, acc_fork);
new_tids.push(edit.add_node(Node::ThreadID {
control: acc_fork,
dimension: 0,
}));
}
// Create the joins.
let mut acc_join = if join_control == fork {
acc_fork
} else {
join_control
};
for _ in new_tids.iter() {
acc_join = edit.add_node(Node::Join { control: acc_join });
edit.sub_edit(join, acc_join);
new_joins.push(acc_join);
}
// Create the reduces.
let mut new_reduces = vec![];
for reduce in reduces.iter() {
let (_, init, reduct) = edit.get_node(*reduce).try_reduce().unwrap();
let num_nodes = edit.num_node_ids();
let mut inner_reduce = NodeID::new(0);
let mut outer_reduce = NodeID::new(0);
for (join_idx, join) in new_joins.iter().enumerate() {
let init = if join_idx == new_joins.len() - 1 {
init
} else {
NodeID::new(num_nodes + join_idx + 1)
};
let reduct = if join_idx == 0 {
reduct
} else {
NodeID::new(num_nodes + join_idx - 1)
};
let new_reduce = edit.add_node(Node::Reduce {
control: *join,
init,
reduct,
});
assert_eq!(new_reduce, NodeID::new(num_nodes + join_idx));
edit.sub_edit(*reduce, new_reduce);
if join_idx == 0 {
inner_reduce = new_reduce;
}
if join_idx == new_joins.len() - 1 {
outer_reduce = new_reduce;
}
}
new_reduces.push((inner_reduce, outer_reduce));
}
// Replace everything.
edit = edit.replace_all_uses(fork, acc_fork)?;
edit = edit.replace_all_uses(join, acc_join)?;
for tid in tids.iter() {
let dim = edit.get_node(*tid).try_thread_id().unwrap().1;
edit.sub_edit(*tid, new_tids[dim]);
edit = edit.replace_all_uses(*tid, new_tids[dim])?;
}
for (reduce, (inner_reduce, outer_reduce)) in zip(reduces.iter(), new_reduces) {
edit = edit.replace_all_uses_where(*reduce, inner_reduce, |id| {
data_in_reduce_cycle.contains(&(*id, *reduce))
})?;
edit = edit.replace_all_uses_where(*reduce, outer_reduce, |id| {
!data_in_reduce_cycle.contains(&(*id, *reduce))
})?;
}
// Delete all the old stuff.
edit = edit.delete_node(fork)?;
edit = edit.delete_node(join)?;
for tid in tids {
edit = edit.delete_node(tid)?;
}
for reduce in reduces {
edit = edit.delete_node(reduce)?;
}
Ok(edit)
});
if success {
Some((new_forks, new_joins))
} else {
None
}
}
pub fn chunk_all_forks_unguarded(
editor: &mut FunctionEditor,
fork_join_map: &HashMap<NodeID, NodeID>,
dim_idx: usize,
tile_size: usize,
) -> () {
// Add dc
let mut dc_id = DynamicConstantID::new(0);
editor.edit(|mut edit| {
dc_id = edit.add_dynamic_constant(DynamicConstant::Constant(tile_size));
Ok(edit)
});
let order = match order {
true => &TileOrder::TileInner,
false => &TileOrder::TileOuter,
};
if editor.is_mutable(*fork) {
chunk_fork_unguarded(editor, *fork, dim_idx, dc_id, order);
}
}
}
// Splits a dimension of a single fork join into multiple.
// Iterates an outer loop original_dim / tile_size times
// adds a tile_size loop as the inner loop
// Assumes that tile size divides original dim evenly.
enum TileOrder {
TileInner,
TileOuter,
}
pub fn chunk_fork_unguarded(
editor: &mut FunctionEditor,
fork: NodeID,
dim_idx: usize,
tile_size: DynamicConstantID,
) -> () {
// tid_dim_idx = tid_dim_idx * tile_size + tid_(dim_idx + 1)
let Node::Fork {
control: old_control,
factors: ref old_factors,
} = *editor.node(fork)
else {
return;
};
assert!(dim_idx < old_factors.len());
let mut new_factors: Vec<_> = old_factors.to_vec();
let fork_users: Vec<_> = editor
.get_users(fork)
.map(|f| (f, editor.node(f).clone()))
.collect();
match order {
TileOrder::TileInner => {
editor.edit(|mut edit| {
let outer = DynamicConstant::div(new_factors[dim_idx], tile_size);
new_factors.insert(dim_idx + 1, tile_size);
new_factors[dim_idx] = edit.add_dynamic_constant(outer);
let new_fork = Node::Fork {
control: old_control,
factors: new_factors.into(),
let new_fork = edit.add_node(new_fork);
edit = edit.replace_all_uses(fork, new_fork)?;
edit.sub_edit(fork, new_fork);
for (tid, node) in fork_users {
let Node::ThreadID {
control: _,
dimension: tid_dim,
} = node
else {
continue;
};
if tid_dim > dim_idx {
let new_tid = Node::ThreadID {
control: new_fork,
dimension: tid_dim + 1,
};
let new_tid = edit.add_node(new_tid);
edit = edit.replace_all_uses(tid, new_tid)?;
edit.sub_edit(tid, new_tid);
edit = edit.delete_node(tid)?;
} else if tid_dim == dim_idx {
let tile_tid = Node::ThreadID {
control: new_fork,
dimension: tid_dim + 1,
};
let tile_tid = edit.add_node(tile_tid);
let tile_size = edit.add_node(Node::DynamicConstant { id: tile_size });
let mul = edit.add_node(Node::Binary {
left: tid,
right: tile_size,
op: BinaryOperator::Mul,
});
let add = edit.add_node(Node::Binary {
left: mul,
right: tile_tid,
op: BinaryOperator::Add,