- Apr 18, 2019
-
-
Bar authored
Also: * Single worker limitation not needed anymore, been fixed in PyTorch since v0.4.0 (https://github.com/pytorch/pytorch/pull/4640) * compress_classifier.py: If run in evaluation mode (--eval), enable deterministic mode. * Call utils.set_deterministic at data loaders creation if deterministic argument is set (don't assume user calls it outside) * Disable CUDNN benchmark mode in utils.set_deterministic (https://pytorch.org/docs/stable/notes/randomness.html#cudnn)
-
- Apr 01, 2019
-
-
Bar authored
Load optimizer from checkpoint (BREAKING - see details) (#182) * Fixes issues #70, #145 and replaces PR #74 * checkpoint.py * save_checkpoint will now save the optimizer type in addition to its state * load_checkpoint will now instantiate an optimizer based on the saved type and load its state * config.py: file/dict_config now accept the resumed epoch to pass to LR schedulers * policy.py: LRPolicy now passes the current epoch to the LR scheduler * Classifier compression sample * New flag '--resume-from' for properly resuming a saved training session, inc. optimizer state and epoch # * Flag '--reset-optimizer' added to allow discarding of a loaded optimizer. * BREAKING: * Previous flag '--resume' is deprecated and is mapped to '--resume-from' + '--reset-optimizer'. * But, old resuming behavior had an inconsistency where the epoch count would continue from the saved epoch, but the LR scheduler was setup as if we were starting from epoch 0. * Using '--resume-from' + '--reset-optimizer' now will simply RESET the epoch count to 0 for the whole environment. * This means that scheduling configurations (in YAML or code) which assumed use of '--resume' might need to be changed to reflect the fact that the epoch count now starts from 0 * All relevant YAML files under 'examples' modified to reflect this change * Initial support for ReduceLROnPlateau (#161): * Allow passing **kwargs to policies via the scheduler * Image classification now passes the validation loss to the scheduler, to be used yo ReduceLROnPlateau * The current implementation is experimental and subject to change
-
- Feb 26, 2019
-
-
Lev Zlotnik authored
Not backward compatible - re-installation is required * Fixes for PyTorch==1.0.0 * Refactoring folder structure * Update installation section in docs
-
- Feb 13, 2019
-
-
Neta Zmora authored
Merging the 'amc' branch with 'master'. This updates the automated compression code in 'master', and adds a greedy filter-pruning algorithm.
-
- Feb 11, 2019
-
-
Guy Jacob authored
Summary of changes: (1) Post-train quantization based on pre-collected statistics (2) Quantized concat, element-wise addition / multiplication and embeddings (3) Move post-train quantization command line args out of sample code (4) Configure post-train quantization from YAML for more fine-grained control (See PR #136 for more detailed changes descriptions)
-
- Feb 10, 2019
-
-
Guy Jacob authored
* For CIFAR-10 / ImageNet only * Refactor data_loaders.py, reduce code duplication * Implemented custom sampler * Integrated in image classification sample * Since we now shuffle the test set, had to update expected results in 2 full_flow_tests that do evaluation
-
- Jan 31, 2019
-
-
Neta Zmora authored
-
- Jan 16, 2019
-
-
Bar authored
* Support for multi-phase activations logging Enable logging activation both durning training and validation at the same session. * Refactoring: Move parser to its own file * Parser is moved from compress_classifier into its own file. * Torch version check is moved to precede main() call. * Move main definition to the top of the file. * Modify parser choices to case-insensitive
-