- Feb 11, 2019
-
-
Guy Jacob authored
Summary of changes: (1) Post-train quantization based on pre-collected statistics (2) Quantized concat, element-wise addition / multiplication and embeddings (3) Move post-train quantization command line args out of sample code (4) Configure post-train quantization from YAML for more fine-grained control (See PR #136 for more detailed changes descriptions)
-
- Jan 24, 2019
-
-
Guy Jacob authored
-
- Jan 23, 2019
-
-
Guy Jacob authored
-
- Dec 04, 2018
-
-
Guy Jacob authored
* Asymmetric post-training quantization (only symmetric supported so until now) * Quantization aware training for range-based (min-max) symmetric and asymmetric quantization * Per-channel quantization support in both training and post-training * Added tests and examples * Updated documentation
-
- Jul 22, 2018
-
-
Gal Novik authored
* Adding PACT quantization method * Move logic modifying the optimizer due to changes the quantizer makes into the Quantizer itself * Updated documentation and tests
-
- Jul 17, 2018
-
-
Guy Jacob authored
* Add Quantizer unit tests * Require 'bits_overrides' to be OrderedDict to support overlapping patterns in a predictable manner + update documentation to reflect this * Quantizer class cleanup * Use "public" nn.Module APIs instead of protected attributes * Call the builtins set/get/delattr instead of the class special methods (__***__) * Fix issues reported in #24 * Bug in RangeLinearQuantParamLayerWrapper - add explicit override of pre_quantized_forward accpeting single input (#15) * Add DoReFa test to full_flow_tests
-