Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
distiller
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
distiller
Commits
e6625e4a
Commit
e6625e4a
authored
5 years ago
by
Neta Zmora
Browse files
Options
Downloads
Patches
Plain Diff
AMC: environment.py - factor initiaization code
parent
7d712fab
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/auto_compression/amc/environment.py
+44
-36
44 additions, 36 deletions
examples/auto_compression/amc/environment.py
with
44 additions
and
36 deletions
examples/auto_compression/amc/environment.py
+
44
−
36
View file @
e6625e4a
...
@@ -324,59 +324,67 @@ class DistillerWrapperEnvironment(gym.Env):
...
@@ -324,59 +324,67 @@ class DistillerWrapperEnvironment(gym.Env):
try
:
try
:
modules_list
=
amc_cfg
.
modules_dict
[
app_args
.
arch
]
modules_list
=
amc_cfg
.
modules_dict
[
app_args
.
arch
]
except
KeyError
:
except
KeyError
:
msglogger
.
warning
(
"
!!! The config file does not specify the modules to compress for %s
"
%
app_args
.
arch
)
# Default to using all convolution layers
distiller
.
assign_layer_fq_names
(
model
)
modules_list
=
[
mod
.
distiller_name
for
mod
in
model
.
modules
()
if
type
(
mod
)
==
torch
.
nn
.
Conv2d
]
msglogger
.
warning
(
"
Using the following layers: %s
"
%
"
,
"
.
join
(
modules_list
))
raise
ValueError
(
"
The config file does not specify the modules to compress for %s
"
%
app_args
.
arch
)
raise
ValueError
(
"
The config file does not specify the modules to compress for %s
"
%
app_args
.
arch
)
self
.
net_wrapper
=
NetworkWrapper
(
model
,
app_args
,
services
,
modules_list
,
amc_cfg
.
pruning_pattern
)
self
.
net_wrapper
=
NetworkWrapper
(
model
,
app_args
,
services
,
modules_list
,
amc_cfg
.
pruning_pattern
)
self
.
original_model_macs
,
self
.
original_model_size
=
self
.
net_wrapper
.
get_resources_requirements
()
self
.
original_model_macs
,
self
.
original_model_size
=
self
.
net_wrapper
.
get_resources_requirements
()
self
.
reset
(
init_only
=
True
)
self
.
reset
(
init_only
=
True
)
msglogger
.
debug
(
"
Model %s has %d modules (%d pruned)
"
,
self
.
app_args
.
arch
,
self
.
net_wrapper
.
model_metadata
.
num_layers
(),
self
.
net_wrapper
.
model_metadata
.
num_pruned_layers
())
msglogger
.
debug
(
"
\t
Total MACs: %s
"
%
distiller
.
pretty_int
(
self
.
original_model_macs
))
msglogger
.
debug
(
"
\t
Total weights: %s
"
%
distiller
.
pretty_int
(
self
.
original_model_size
))
self
.
_max_episode_steps
=
self
.
net_wrapper
.
model_metadata
.
num_pruned_layers
()
# Hack for Coach-TD3
self
.
_max_episode_steps
=
self
.
net_wrapper
.
model_metadata
.
num_pruned_layers
()
# Hack for Coach-TD3
log_amc_config
(
amc_cfg
)
self
.
episode
=
0
self
.
episode
=
0
self
.
best_reward
=
float
(
"
-inf
"
)
self
.
best_reward
=
float
(
"
-inf
"
)
self
.
action_low
=
amc_cfg
.
action_range
[
0
]
self
.
action_low
=
amc_cfg
.
action_range
[
0
]
self
.
action_high
=
amc_cfg
.
action_range
[
1
]
self
.
action_high
=
amc_cfg
.
action_range
[
1
]
self
.
_log_model_info
()
log_amc_config
(
amc_cfg
)
self
.
_configure_action_space
()
self
.
observation_space
=
spaces
.
Box
(
0
,
float
(
"
inf
"
),
shape
=
(
len
(
Observation
.
_fields
),))
self
.
stats_logger
=
AMCStatsLogger
(
os
.
path
.
join
(
logdir
,
'
amc.csv
'
))
self
.
ft_stats_logger
=
FineTuneStatsLogger
(
os
.
path
.
join
(
logdir
,
'
ft_top1.csv
'
))
if
self
.
amc_cfg
.
pruning_method
==
"
fm-reconstruction
"
:
self
.
_collect_fm_reconstruction_samples
(
modules_list
)
def
_collect_fm_reconstruction_samples
(
self
,
modules_list
):
"""
Run the forward-pass on the selected dataset and collect feature-map samples.
These data will be used when we optimize the compressed-net
'
s weights by trying
to reconstruct these samples.
"""
from
functools
import
partial
if
self
.
amc_cfg
.
pruning_pattern
!=
"
channels
"
:
raise
ValueError
(
"
Feature-map reconstruction is only supported when pruning weights channels
"
)
def
acceptance_criterion
(
m
,
mod_names
):
# Collect feature-maps only for Conv2d layers, if they are in our modules list.
return
isinstance
(
m
,
torch
.
nn
.
Conv2d
)
and
m
.
distiller_name
in
mod_names
# For feature-map reconstruction we need to collect a representative set
# of inter-layer feature-maps
from
distiller.pruning
import
FMReconstructionChannelPruner
collect_intermediate_featuremap_samples
(
self
.
net_wrapper
.
model
,
self
.
net_wrapper
.
validate
,
partial
(
acceptance_criterion
,
mod_names
=
modules_list
),
partial
(
FMReconstructionChannelPruner
.
cache_featuremaps_fwd_hook
,
n_points_per_fm
=
self
.
amc_cfg
.
n_points_per_fm
))
def
_log_model_info
(
self
):
msglogger
.
debug
(
"
Model %s has %d modules (%d pruned)
"
,
self
.
app_args
.
arch
,
self
.
net_wrapper
.
model_metadata
.
num_layers
(),
self
.
net_wrapper
.
model_metadata
.
num_pruned_layers
())
msglogger
.
debug
(
"
\t
Total MACs: %s
"
%
distiller
.
pretty_int
(
self
.
original_model_macs
))
msglogger
.
debug
(
"
\t
Total weights: %s
"
%
distiller
.
pretty_int
(
self
.
original_model_size
))
def
_configure_action_space
(
self
):
if
is_using_continuous_action_space
(
self
.
amc_cfg
.
agent_algo
):
if
is_using_continuous_action_space
(
self
.
amc_cfg
.
agent_algo
):
if
self
.
amc_cfg
.
agent_algo
==
"
ClippedPPO-continuous
"
:
if
self
.
amc_cfg
.
agent_algo
==
"
ClippedPPO-continuous
"
:
self
.
action_space
=
spaces
.
Box
(
PPO_MIN
,
PPO_MAX
,
shape
=
(
1
,))
self
.
action_space
=
spaces
.
Box
(
PPO_MIN
,
PPO_MAX
,
shape
=
(
1
,))
else
:
else
:
self
.
action_space
=
spaces
.
Box
(
self
.
action_low
,
self
.
action_high
,
shape
=
(
1
,))
self
.
action_space
=
spaces
.
Box
(
self
.
action_low
,
self
.
action_high
,
shape
=
(
1
,))
self
.
action_space
.
default_action
=
self
.
action_low
self
.
action_space
.
default_action
=
self
.
action_low
else
:
else
:
self
.
action_space
=
spaces
.
Discrete
(
10
)
self
.
action_space
=
spaces
.
Discrete
(
10
)
self
.
observation_space
=
spaces
.
Box
(
0
,
float
(
"
inf
"
),
shape
=
(
len
(
Observation
.
_fields
),))
self
.
stats_logger
=
AMCStatsLogger
(
os
.
path
.
join
(
logdir
,
'
amc.csv
'
))
self
.
ft_stats_logger
=
FineTuneStatsLogger
(
os
.
path
.
join
(
logdir
,
'
ft_top1.csv
'
))
if
self
.
amc_cfg
.
pruning_method
==
"
fm-reconstruction
"
:
if
self
.
amc_cfg
.
pruning_pattern
!=
"
channels
"
:
raise
ValueError
(
"
Feature-map reconstruction is only supported when pruning weights channels
"
)
from
functools
import
partial
def
acceptance_criterion
(
m
,
mod_names
):
# Collect feature-maps only for Conv2d layers, if they are in our modules list.
return
isinstance
(
m
,
torch
.
nn
.
Conv2d
)
and
m
.
distiller_name
in
mod_names
# For feature-map reconstruction we need to collect a representative set
# of inter-layer feature-maps
from
distiller.pruning
import
FMReconstructionChannelPruner
collect_intermediate_featuremap_samples
(
self
.
net_wrapper
.
model
,
self
.
net_wrapper
.
validate
,
partial
(
acceptance_criterion
,
mod_names
=
modules_list
),
partial
(
FMReconstructionChannelPruner
.
cache_featuremaps_fwd_hook
,
n_points_per_fm
=
self
.
amc_cfg
.
n_points_per_fm
))
@property
@property
def
steps_per_episode
(
self
):
def
steps_per_episode
(
self
):
return
self
.
net_wrapper
.
model_metadata
.
num_pruned_layers
()
return
self
.
net_wrapper
.
model_metadata
.
num_pruned_layers
()
...
@@ -431,7 +439,7 @@ class DistillerWrapperEnvironment(gym.Env):
...
@@ -431,7 +439,7 @@ class DistillerWrapperEnvironment(gym.Env):
def
step
(
self
,
pruning_action
):
def
step
(
self
,
pruning_action
):
"""
Take a step, given an action.
"""
Take a step, given an action.
The action represents the desired sparsity for the
"
current
"
layer.
The action represents the desired sparsity for the
"
current
"
layer
(i.e. the percentage of weights to remove)
.
This function is invoked by the Agent.
This function is invoked by the Agent.
"""
"""
pruning_action
=
float
(
pruning_action
[
0
])
pruning_action
=
float
(
pruning_action
[
0
])
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment