Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
distiller
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
distiller
Commits
d9f6bfed
Commit
d9f6bfed
authored
6 years ago
by
Neta Zmora
Browse files
Options
Downloads
Patches
Plain Diff
Update ADC_DDPG.py to comply with latest Coach changes
parent
434540d4
No related branches found
Tags
amc_before_pytorch1.1_merge
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/automated_deep_compression/rl_libs/coach/presets/ADC_DDPG.py
+22
-17
22 additions, 17 deletions
...omated_deep_compression/rl_libs/coach/presets/ADC_DDPG.py
with
22 additions
and
17 deletions
examples/automated_deep_compression/rl_libs/coach/presets/ADC_DDPG.py
+
22
−
17
View file @
d9f6bfed
...
...
@@ -6,21 +6,20 @@ from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps
from
rl_coach.environments.gym_environment
import
GymVectorEnvironment
from
rl_coach.exploration_policies.truncated_normal
import
TruncatedNormalParameters
from
rl_coach.exploration_policies.additive_noise
import
AdditiveNoiseParameters
from
rl_coach.memories.memory
import
MemoryGranularity
from
rl_coach.base_parameters
import
EmbedderScheme
from
rl_coach.architectures.tensorflow_components.layers
import
Dense
steps_per_episode
=
13
from
rl_coach.base_parameters
import
EmbeddingMergerType
from
rl_coach.filters.filter
import
InputFilter
# !!!! Enable when using branch "distiller-AMC-induced-changes"
# from rl_coach.filters.reward import RewardEwmaNormalizationFilter
import
numpy
as
np
####################
# Graph Scheduling #
####################
schedule_params
=
ScheduleParameters
()
schedule_params
.
improve_steps
=
EnvironmentEpisodes
(
800
)
schedule_params
.
steps_between_evaluation_periods
=
EnvironmentEpisodes
(
5000
)
schedule_params
.
evaluation_steps
=
EnvironmentEpisodes
(
0
)
# Neta: 0
schedule_params
.
heatup_steps
=
EnvironmentEpisodes
(
100
)
schedule_params
.
steps_between_evaluation_periods
=
EnvironmentEpisodes
(
0
)
schedule_params
.
evaluation_steps
=
EnvironmentEpisodes
(
0
)
#####################
# DDPG Agent Params #
...
...
@@ -31,7 +30,9 @@ agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(300
agent_params
.
network_wrappers
[
'
actor
'
].
heads_parameters
[
0
].
activation_function
=
'
sigmoid
'
agent_params
.
network_wrappers
[
'
critic
'
].
input_embedders_parameters
[
'
observation
'
].
scheme
=
[
Dense
(
300
)]
agent_params
.
network_wrappers
[
'
critic
'
].
middleware_parameters
.
scheme
=
[
Dense
(
300
)]
agent_params
.
network_wrappers
[
'
critic
'
].
input_embedders_parameters
[
'
action
'
].
scheme
=
EmbedderScheme
.
Empty
agent_params
.
network_wrappers
[
'
critic
'
].
input_embedders_parameters
[
'
action
'
].
scheme
=
[
Dense
(
300
)]
agent_params
.
network_wrappers
[
'
critic
'
].
embedding_merger_type
=
EmbeddingMergerType
.
Sum
agent_params
.
network_wrappers
[
'
actor
'
].
optimizer_type
=
'
Adam
'
agent_params
.
network_wrappers
[
'
actor
'
].
adam_optimizer_beta1
=
0.9
...
...
@@ -44,8 +45,11 @@ agent_params.network_wrappers['critic'].adam_optimizer_beta1 = 0.9
agent_params
.
network_wrappers
[
'
critic
'
].
adam_optimizer_beta2
=
0.999
agent_params
.
network_wrappers
[
'
critic
'
].
optimizer_epsilon
=
1e-8
agent_params
.
network_wrappers
[
'
actor
'
].
learning_rate
=
0.0001
agent_params
.
network_wrappers
[
'
critic
'
].
learning_rate
=
0.001
agent_params
.
network_wrappers
[
'
actor
'
].
learning_rate
=
1e-4
agent_params
.
network_wrappers
[
'
critic
'
].
learning_rate
=
1e-3
# !!!! Enable when using branch "distiller-AMC-induced-changes"
# agent_params.algorithm.override_episode_rewards_with_the_last_transition_reward = True
agent_params
.
algorithm
.
rate_for_copying_weights_to_target
=
0.01
# Tau pg. 11
#agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1)
...
...
@@ -53,15 +57,16 @@ agent_params.algorithm.heatup_using_network_decisions = False # We want uniform-
agent_params
.
algorithm
.
discount
=
1
agent_params
.
algorithm
.
use_non_zero_discount_for_terminal_states
=
True
# See : https://nervanasystems.github.io/coach/components/agents/policy_optimization/ddpg.html?highlight=ddpg#rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters
# Replay buffer size
agent_params
.
memory
.
max_size
=
(
MemoryGranularity
.
Transitions
,
2000
)
agent_params
.
exploration
=
TruncatedNormalParameters
()
agent_params
.
algorithm
.
use_target_network_for_evaluation
=
True
#
agent_params.exploration.
evaluation_
noise_percentage
= 0 # Neta new
#
agent_params.
exploration = AdditiveNoiseParameters()
agent_params
.
exploration
.
noise_
as_
percentage
_from_action_space
=
False
agent_params
.
exploration
.
evaluation_noise
=
0
# Neta new
#agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
agent_params
.
algorithm
.
use_target_network_for_evaluation
=
True
agent_params
.
algorithm
.
act_for_full_episodes
=
True
# !!!! Enable when using branch "distiller-AMC-induced-changes"
#agent_params.pre_network_filter = InputFilter()
#agent_params.pre_network_filter.add_reward_filter('ewma_norm', RewardEwmaNormalizationFilter(alpha=0.5))
##############################
# Gym #
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment