Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
distiller
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
distiller
Commits
bc00ee48
Commit
bc00ee48
authored
5 years ago
by
Neta Zmora
Browse files
Options
Downloads
Patches
Plain Diff
Prefer .detach() or .data
parent
fc62caab
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
distiller/apputils/image_classifier.py
+6
-6
6 additions, 6 deletions
distiller/apputils/image_classifier.py
with
6 additions
and
6 deletions
distiller/apputils/image_classifier.py
+
6
−
6
View file @
bc00ee48
...
...
@@ -566,11 +566,11 @@ def train(train_loader, model, criterion, optimizer, epoch,
if
not
early_exit_mode
(
args
):
loss
=
criterion
(
output
,
target
)
# Measure accuracy
classerr
.
add
(
output
.
d
a
ta
,
target
)
classerr
.
add
(
output
.
d
e
ta
ch
()
,
target
)
acc_stats
.
append
([
classerr
.
value
(
1
),
classerr
.
value
(
5
)])
else
:
# Measure accuracy and record loss
classerr
.
add
(
output
[
args
.
num_exits
-
1
].
d
a
ta
,
target
)
# add the last exit (original exit)
classerr
.
add
(
output
[
args
.
num_exits
-
1
].
d
e
ta
ch
()
,
target
)
# add the last exit (original exit)
loss
=
earlyexit_loss
(
output
,
target
,
criterion
,
args
)
# Record loss
losses
[
OBJECTIVE_LOSS_KEY
].
add
(
loss
.
item
())
...
...
@@ -698,9 +698,9 @@ def _validate(data_loader, model, criterion, loggers, args, epoch=-1):
loss
=
criterion
(
output
,
target
)
# measure accuracy and record loss
losses
[
'
objective_loss
'
].
add
(
loss
.
item
())
classerr
.
add
(
output
.
d
a
ta
,
target
)
classerr
.
add
(
output
.
d
e
ta
ch
()
,
target
)
if
args
.
display_confusion
:
confusion
.
add
(
output
.
d
a
ta
,
target
)
confusion
.
add
(
output
.
d
e
ta
ch
()
,
target
)
else
:
earlyexit_validate_loss
(
output
,
target
,
criterion
,
args
)
...
...
@@ -751,10 +751,10 @@ def earlyexit_loss(output, target, criterion, args):
for
exitnum
in
range
(
args
.
num_exits
-
1
):
exit_loss
=
criterion
(
output
[
exitnum
],
target
)
weighted_loss
+=
args
.
earlyexit_lossweights
[
exitnum
]
*
exit_loss
args
.
exiterrors
[
exitnum
].
add
(
output
[
exitnum
].
d
a
ta
,
target
)
args
.
exiterrors
[
exitnum
].
add
(
output
[
exitnum
].
d
e
ta
ch
()
,
target
)
# handle final exit
weighted_loss
+=
(
1.0
-
sum_lossweights
)
*
criterion
(
output
[
args
.
num_exits
-
1
],
target
)
args
.
exiterrors
[
args
.
num_exits
-
1
].
add
(
output
[
args
.
num_exits
-
1
].
d
a
ta
,
target
)
args
.
exiterrors
[
args
.
num_exits
-
1
].
add
(
output
[
args
.
num_exits
-
1
].
d
e
ta
ch
()
,
target
)
return
weighted_loss
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment