Skip to content
Snippets Groups Projects
Commit b4a07e46 authored by Neta Zmora's avatar Neta Zmora
Browse files

Jupyter: utility notebook to save intermediate activations to file

This short notebook performs a forward-pass on a single ImageNet image,
and saves the intermediate results to a file for later inspection
parent eee01dbf
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
## Save intermediate feature-maps to file
This short notebook performs a forward-pass on a single ImageNet image, and save the intermediate results to a file for later inspection.
%% Cell type:code id: tags:
``` python
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
# Relative import of code from distiller, w/o installing the package
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path:
sys.path.append(module_path)
import distiller
import apputils
import models
from apputils import *
```
%% Cell type:code id: tags:
``` python
# Load ResNet50
resnet50 = models.create_model(pretrained=True, dataset='imagenet', arch='resnet50', parallel=False)
# Load the "sparse" compressed model
resnet50_sparse = models.create_model(pretrained=True, dataset='imagenet', arch='resnet50', parallel=True)
load_checkpoint(resnet50_sparse , "../examples/classifier_compression/resnet50_checkpoint_70.66-sparse_76.09-top1.pth.tar");
resnet50_sparse = distiller.make_non_parallel_copy(resnet50_sparse)
```
%% Cell type:code id: tags:
``` python
from torchvision import transforms
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
])
# Open some file and do a forward-pass. We do this to check everything is cool.
img = Image.open("../../data.imagenet/val/n02669723/ILSVRC2012_val_00029372.JPEG")
img = preprocess(img)
img = img.unsqueeze_(0)
sample = Variable(img)
resnet50_sparse.eval()
predictions = resnet50_sparse(sample.cuda())
top1_vals, top1_indices = torch.max(predictions, 1)
print(top1_vals.item())
```
%% Cell type:code id: tags:
``` python
# This is where the work gets done:
# We register for forward callbacks, perform a forward pass, and in the callbacks we cache the
# intermediate feature-maps.
intermediary_results = {}
cb_handles = []
def save_conv_output(m, i, o):
intermediary_results[m.distiller_name] = o.data.cpu().numpy()
def register_forward_hook(m):
if hasattr(m, 'distiller_name'):
h = m.register_forward_hook(save_conv_output)
cb_handles.append(h)
distiller.utils.assign_layer_fq_names(resnet50_sparse)
resnet50_sparse.apply(register_forward_hook)
predictions = resnet50_sparse(sample.cuda())
for h in cb_handles:
h.remove()
print(len(intermediary_results))
```
%% Cell type:code id: tags:
``` python
# Now save the feature-maps to file...
import pickle
with open('resnet50_sparse_fms.pickle', 'wb') as f:
pickle.dump(intermediary_results, f)
#np_weights = pickle.save(handle)
```
%% Cell type:code id: tags:
``` python
# This is how you load results later...
intermediary_results_from_file = {}
with open('resnet50_sparse_fms.pickle', 'rb') as f:
intermediary_results_from_file = pickle.load(f)
# To print all layer names:
for name, tensor in intermediary_results_from_file.items():
print(name, tensor.size)
```
%% Cell type:code id: tags:
``` python
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment