Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
distiller
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
llvm
distiller
Commits
9c21c4e3
Commit
9c21c4e3
authored
5 years ago
by
Neta Zmora
Browse files
Options
Downloads
Patches
Plain Diff
Plain20 - add a version of the Plain20 model w/o BN layers
parent
8ff74211
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
distiller/models/cifar10/plain_cifar.py
+23
-15
23 additions, 15 deletions
distiller/models/cifar10/plain_cifar.py
with
23 additions
and
15 deletions
distiller/models/cifar10/plain_cifar.py
+
23
−
15
View file @
9c21c4e3
...
...
@@ -35,7 +35,7 @@ import torch.nn as nn
import
math
__all__
=
[
'
plain20_cifar
'
]
__all__
=
[
'
plain20_cifar
'
,
'
plain20_cifar_nobn
'
]
NUM_CLASSES
=
10
...
...
@@ -49,36 +49,36 @@ def conv3x3(in_planes, out_planes, stride=1):
class
BasicBlock
(
nn
.
Module
):
expansion
=
1
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
):
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
,
batch_norm
=
True
):
super
().
__init__
()
self
.
conv1
=
conv3x3
(
inplanes
,
planes
,
stride
)
self
.
bn1
=
nn
.
BatchNorm2d
(
planes
)
self
.
bn1
=
nn
.
BatchNorm2d
(
planes
)
if
batch_norm
else
None
self
.
relu1
=
nn
.
ReLU
(
inplace
=
False
)
self
.
conv2
=
conv3x3
(
planes
,
planes
)
self
.
bn2
=
nn
.
BatchNorm2d
(
planes
)
self
.
bn2
=
nn
.
BatchNorm2d
(
planes
)
if
batch_norm
else
None
self
.
relu2
=
nn
.
ReLU
(
inplace
=
False
)
def
forward
(
self
,
x
):
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
bn1
(
out
)
if
self
.
bn1
is
not
None
else
out
out
=
self
.
relu1
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
out
=
self
.
bn2
(
out
)
if
self
.
bn2
is
not
None
else
out
out
=
self
.
relu2
(
out
)
return
out
class
PlainCifar
(
nn
.
Module
):
def
__init__
(
self
,
block
,
blks_per_layer
,
num_classes
=
NUM_CLASSES
):
def
__init__
(
self
,
block
,
blks_per_layer
,
num_classes
=
NUM_CLASSES
,
batch_norm
=
True
):
self
.
inplanes
=
16
super
().
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
3
,
self
.
inplanes
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
bn1
=
nn
.
BatchNorm2d
(
self
.
inplanes
)
self
.
bn1
=
nn
.
BatchNorm2d
(
self
.
inplanes
)
if
batch_norm
else
None
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
layer1
=
self
.
_make_layer
(
block
,
16
,
blks_per_layer
[
0
],
stride
=
1
)
self
.
layer2
=
self
.
_make_layer
(
block
,
32
,
blks_per_layer
[
1
],
stride
=
2
)
self
.
layer3
=
self
.
_make_layer
(
block
,
64
,
blks_per_layer
[
2
],
stride
=
2
)
self
.
layer1
=
self
.
_make_layer
(
block
,
16
,
blks_per_layer
[
0
],
stride
=
1
,
batch_norm
=
batch_norm
)
self
.
layer2
=
self
.
_make_layer
(
block
,
32
,
blks_per_layer
[
1
],
stride
=
2
,
batch_norm
=
batch_norm
)
self
.
layer3
=
self
.
_make_layer
(
block
,
64
,
blks_per_layer
[
2
],
stride
=
2
,
batch_norm
=
batch_norm
)
self
.
avgpool
=
nn
.
AvgPool2d
(
8
,
stride
=
1
)
self
.
fc
=
nn
.
Linear
(
64
*
block
.
expansion
,
num_classes
)
...
...
@@ -91,22 +91,22 @@ class PlainCifar(nn.Module):
m
.
weight
.
data
.
fill_
(
1
)
m
.
bias
.
data
.
zero_
()
def
_make_layer
(
self
,
block
,
planes
,
num_blocks
,
stride
):
def
_make_layer
(
self
,
block
,
planes
,
num_blocks
,
stride
,
batch_norm
=
True
):
# Each layer is composed on 2*num_blocks blocks, and the first block usually
# performs downsampling of the input, and doubling of the number of filters/feature-maps.
blocks
=
[]
inplanes
=
self
.
inplanes
# First block is special (downsamples and adds filters)
blocks
.
append
(
block
(
inplanes
,
planes
,
stride
))
blocks
.
append
(
block
(
inplanes
,
planes
,
stride
,
batch_norm
=
batch_norm
))
self
.
inplanes
=
planes
*
block
.
expansion
for
i
in
range
(
num_blocks
-
1
):
blocks
.
append
(
block
(
self
.
inplanes
,
planes
,
stride
=
1
))
blocks
.
append
(
block
(
self
.
inplanes
,
planes
,
stride
=
1
,
batch_norm
=
batch_norm
))
return
nn
.
Sequential
(
*
blocks
)
def
forward
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
bn1
(
x
)
if
self
.
bn1
is
not
None
else
x
x
=
self
.
relu
(
x
)
x
=
self
.
layer1
(
x
)
...
...
@@ -120,5 +120,13 @@ class PlainCifar(nn.Module):
def
plain20_cifar
(
**
kwargs
):
# Plain20 for CIFAR10
model
=
PlainCifar
(
BasicBlock
,
[
3
,
3
,
3
],
**
kwargs
)
return
model
#return plain20_cifar_nobn(**kwargs)
def
plain20_cifar_nobn
(
**
kwargs
):
# Plain20 for CIFAR10, without batch-normalization layers
model
=
PlainCifar
(
BasicBlock
,
[
3
,
3
,
3
],
batch_norm
=
False
,
**
kwargs
)
return
model
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment