Skip to content
Snippets Groups Projects
Commit 8de6223e authored by Neta Zmora's avatar Neta Zmora
Browse files

Testing: added a basic filter pruning + thinning test

parent 37aa68bf
No related branches found
No related tags found
No related merge requests found
...@@ -21,12 +21,38 @@ module_path = os.path.abspath(os.path.join('..')) ...@@ -21,12 +21,38 @@ module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path: if module_path not in sys.path:
sys.path.append(module_path) sys.path.append(module_path)
import distiller import distiller
import models
def test_sparsity(): def test_sparsity():
zeros = torch.zeros(2,3,5,6) zeros = torch.zeros(2,3,5,6)
print(distiller.sparsity(zeros)) print(distiller.sparsity(zeros))
assert distiller.sparsity(zeros) == 1.0 assert distiller.sparsity(zeros) == 1.0
assert distiller.sparsity_3D(zeros) == 1.0
assert distiller.density_3D(zeros) == 0.0
ones = torch.zeros(12,43,4,6) ones = torch.zeros(12,43,4,6)
ones.fill_(1) ones.fill_(1)
assert distiller.sparsity(ones) == 0.0 assert distiller.sparsity(ones) == 0.0
def test_utils():
model = models.create_model(False, 'cifar10', 'resnet20_cifar', parallel=False)
assert model is not None
p = distiller.model_find_param(model, "")
assert p is None
# Search for a parameter by its "non-parallel" name
p = distiller.model_find_param(model, "layer1.0.conv1.weight")
assert p is not None
# Search for a module name
module_to_find = None
for name, m in model.named_modules():
if name == "layer1.0.conv1":
module_to_find = m
break
assert module_to_find is not None
module_name = distiller.model_find_module_name(model, module_to_find)
assert module_name == "layer1.0.conv1"
#
# Copyright (c) 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import torch
import os
import sys
module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path:
sys.path.append(module_path)
import distiller
import pytest
from models import ALL_MODEL_NAMES, create_model
from apputils import SummaryGraph, onnx_name_2_pytorch_name
# Logging configuration
logging.basicConfig(level=logging.INFO)
fh = logging.FileHandler('test.log')
logger = logging.getLogger()
logger.addHandler(fh)
def find_module_by_name(model, module_to_find):
for name, m in model.named_modules():
if name == module_to_find:
return m
return None
def test_ranked_filter_pruning():
model = create_model(False, 'cifar10', 'resnet20_cifar', parallel=False)
assert model is not None
# Create the masks
zeros_mask_dict = {}
for name, param in model.named_parameters():
masker = distiller.ParameterMasker(name)
zeros_mask_dict[name] = masker
# Test that we can access the weights tensor of the first convolution in layer 1
conv1_p = distiller.model_find_param(model, "layer1.0.conv1.weight")
assert conv1_p is not None
# Test that there are no zero-channels
assert distiller.sparsity_3D(conv1_p) == 0.0
# Create a filter-ranking pruner
reg_regims = {"layer1.0.conv1.weight" : [0.1, "3D"]}
pruner = distiller.pruning.L1RankedStructureParameterPruner("filter_pruner", reg_regims)
pruner.set_param_mask(conv1_p, "layer1.0.conv1.weight", zeros_mask_dict, meta=None)
conv1 = find_module_by_name(model, "layer1.0.conv1")
assert conv1 is not None
# Test that the mask has the correct fraction of filters pruned.
# We asked for 10%, but there are only 16 filters, so we have to settle for 1/16 filters
expected_pruning = int(0.1 * conv1.out_channels) / conv1.out_channels
assert distiller.sparsity_3D(zeros_mask_dict["layer1.0.conv1.weight"].mask) == expected_pruning
# Test masker
assert distiller.sparsity_3D(conv1_p) == 0
zeros_mask_dict["layer1.0.conv1.weight"].apply_mask(conv1_p)
assert distiller.sparsity_3D(conv1_p) == expected_pruning
# Remove filters
assert conv1.out_channels == 16
conv2 = find_module_by_name(model, "layer1.0.conv2")
assert conv2 is not None
assert conv1.in_channels == 16
# Test thinning
distiller.remove_filters(model, zeros_mask_dict, "resnet20_cifar", "cifar10")
assert conv1.out_channels == 15
assert conv2.in_channels == 15
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment