*[TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing](https://arxiv.org/abs/2002.12620)*,<br>
arXiv:2002.12620, 2020.
- Alexander Kozlov, Ivan Lazarevich, Vasily Shamporov, Nikolay Lyalyushkin, Yury Gorbachev.<br>
*[Neural Network Compression Framework for fast model inference](https://arxiv.org/abs/2002.08679)*,<br>
arXiv:2002.08679, 2020.
- Moran Shkolnik, Brian Chmiel, Ron Banner, Gil Shomron, Yuri Nahshan, Alex Bronstein, Uri Weiser.<br>
*[Robust Quantization: One Model to Rule Them All](https://arxiv.org/abs/2002.07686)*,<br>
arXiv:2002.07686, 2020.
- Muhammad Abdullah Hanif, Muhammad Shafique.<br>
*[SalvageDNN: salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping](https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0164)*,<br>
In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering SciencesVolume 378, Issue 2164, 2019.<br>
https://doi.org/10.1098/rsta.2019.0164
- Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, Li Du.<br>
*[DynExit: A Dynamic Early-Exit Strategy for Deep Residual Networks](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9020551)*,<br>
In IEEE International Workshop on Signal Processing Systems (SiPS), 2019.
In: Rojas I., Joya G., Catala A. (eds) Advances in Computational Intelligence Lecture Notes in Computer Science, vol 11507. Springer, Cham. International Work-Conference on Artificial Neural Networks (IWANN 2019).
- Ahmed T. Elthakeb, Prannoy Pilligundla, Hadi Esmaeilzadeh.<br>
*[Divide and Conquer: Leveraging Intermediate Feature Representations for Quantized Training of Neural Networks](https://arxiv.org/abs/1906.06033),*
arXiv:1906.06033, 2019
*[Divide and Conquer: Leveraging Intermediate Feature Representations for Quantized Training of Neural Networks](https://arxiv.org/abs/1906.06033),*<br>
arXiv:1906.06033, 2019
- Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang.<br>
*[Improving Neural Network Quantization without Retraining using Outlier Channel Splitting](https://arxiv.org/abs/1901.09504),*<br>