Skip to content
Snippets Groups Projects
Commit 2c2a9417 authored by Neta Zmora's avatar Neta Zmora
Browse files

Update MobileNet v1 baseline training configuration file

parent 5059419b
No related branches found
No related tags found
No related merge requests found
# https://github.com/shicai/MobileNet-Caffe/issues/9
# #
# net: "train_val.prototxt" # This YAML file contains the configuration and command-line arguments for training MobileNet v1 from scratch.
# #test_initialization: false # Top1: 71.156 Top5: 89.972
# #test_iter: 100 #
# #test_interval: 5000 # compress_classifier.py --arch=mobilenet ../../../data.imagenet --lr=0.045 --batch=256 -j=32 --vs=0 --name=mobilenet_v1_training -p=50 --wd=1e-4 --epochs=200 --compress=../baseline_networks/mobilenet_imagenet_baseline_training.yaml
# display: 20 #
# average_loss: 20 #
# base_lr: 0.1 # 2019-07-01 19:22:09,917 - ==> Best [Top1: 71.156 Top5: 89.972 Sparsity:0.00 Params: 4209088 on epoch: 199]
# lr_policy: "poly" # 2019-07-01 19:22:09,917 - Saving checkpoint to: logs/mobilenet_v1_training___2019.06.29-122534/mobilenet_v1_training_checkpoint.pth.tar
# power: 1.0 # 2019-07-01 19:22:10,145 - --- test ---------------------
# max_iter: 500000 # 2019-07-01 19:22:10,145 - 50000 samples (256 per mini-batch)
# momentum: 0.9 # 2019-07-01 19:22:28,635 - Test: [ 50/ 195] Loss 1.189988 Top1 70.539062 Top5 89.781250
# weight_decay: 0.0001 # 2019-07-01 19:22:35,567 - Test: [ 100/ 195] Loss 1.182166 Top1 70.851562 Top5 89.792969
# snapshot: 5000 # 2019-07-01 19:22:43,253 - Test: [ 150/ 195] Loss 1.177892 Top1 70.927083 Top5 89.903646
# snapshot_prefix: "mobilenet" # 2019-07-01 19:22:50,377 - ==> Top1: 71.156 Top5: 89.972 Loss: 1.175
#
# python compress_classifier.py -a mobilenet_050 --compress ../mobilenet/mobilenet_imagenet_baseline_training.yaml -j 22 ../../../data.imagenet -p 50 -b 256 --epochs 120 --lr 0.1 --wd 0.0001 --momentum 0.9
lr_schedulers: lr_schedulers:
training_lr: training_lr:
class: PolynomialLR class: ExponentialLR
T_max: 120 gamma: 0.98
power: 1.0
policies: policies:
- lr_scheduler: - lr_scheduler:
...@@ -29,30 +27,4 @@ policies: ...@@ -29,30 +27,4 @@ policies:
ending_epoch: 200 ending_epoch: 200
frequency: 1 frequency: 1
# MobileNet V1
# https://arxiv.org/pdf/1704.04861.pdf
# MobileNet models were trained in TensorFlow [1] using RMSprop [33] with asynchronous gradient descent similar
# to Inception V3 [31]. However, contrary to training large models we use less regularization and data augmentation
# techniques because small models have less trouble with overfitting. When training MobileNets we do not use
# side heads or label smoothing and additionally reduce the amount image of distortions by limiting the size of small
# crops that are used in large Inception training [31]. Additionally, we found that it was important to put very little
# or no weight decay (l2 regularization) on the depthwise filters since their are so few parameters in them.
# Inception V3
# https://arxiv.org/pdf/1512.00567.pdf
# ... Our best models were achieved using RMSProp [21] with decay of 0.9 and eps = 1.0.
# We used a learning rate of 0.045, decayed every two epoch using an exponential rate of 0.94.
# python compress_classifier.py -a mobilenet_050 --compress ../mobilenet/mobilenet_imagenet_baseline_training.yaml -j 11 ~/datasets/imagenet -p 400 -b 32 --epochs 100 --lr 0.045 --wd 0.0001 --momentum 0 --gpu 0
#lr_schedulers:
# training_lr:
# class: ExponentialLR
# gamma: 0.94
#
#policies:
# - lr_scheduler:
# instance_name: training_lr
# starting_epoch: 0
# ending_epoch: 200
# frequency: 2
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment