-
Neta Zmora authoredNeta Zmora authored
data_loaders.py 7.37 KiB
#
# Copyright (c) 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Helper code for data loading.
This code will help with the image classification datasets: ImageNet and CIFAR10
"""
import os
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
DATASETS_NAMES = ['imagenet', 'cifar10']
def load_data(dataset, data_dir, batch_size, workers, deterministic=False):
"""Load a dataset.
Args:
dataset: a string with the name of the dataset to load (cifar10/imagenet)
data_dir: the directory where the datset resides
batch_size: the batch size
workers: the number of worker threads to use for loading the data
deterministic: set to True if you want the data loading process to be deterministic.
Note that deterministic data loading suffers from poor performance.
"""
assert dataset in DATASETS_NAMES
if dataset == 'cifar10':
return cifar10_load_data(data_dir, batch_size, workers, deterministic=deterministic)
if dataset == 'imagenet':
return imagenet_load_data(data_dir, batch_size, workers, deterministic=deterministic)
print("FATAL ERROR: load_data does not support dataset %s" % dataset)
exit(1)
def __image_size(dataset):
# un-squeeze is used here to add the batch dimension (value=1), which is missing
return dataset[0][0].unsqueeze(0).size()
def __deterministic_worker_init_fn(worker_id, seed=0):
import random
import numpy
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
def cifar10_load_data(data_dir, batch_size, num_workers, valid_size=0.1, deterministic=False):
"""Load the CIFAR10 dataset.
The original training dataset is split into training and validation sets (code is
inspired by https://gist.github.com/kevinzakka/d33bf8d6c7f06a9d8c76d97a7879f5cb).
By default we use a 90:10 (45K:5K) training:validation split.
The output of torchvision datasets are PIL Image images of range [0, 1].
We transform them to Tensors of normalized range [-1, 1]
https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py
Data augmentation: 4 pixels are padded on each side, and a 32x32 crop is randomly sampled
from the padded image or its horizontal flip.
This is similar to [1] and some other work that use CIFAR10.
[1] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply Supervised Nets.
arXiv:1409.5185, 2014
"""
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CIFAR10(root=data_dir, train=True,
download=True, transform=transform)
num_train = len(train_dataset)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
worker_init_fn = __deterministic_worker_init_fn if deterministic else None
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, sampler=train_sampler,
num_workers=num_workers, pin_memory=True,
worker_init_fn=worker_init_fn)
valid_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, sampler=valid_sampler,
num_workers=num_workers, pin_memory=True,
worker_init_fn=worker_init_fn)
testset = datasets.CIFAR10(root=data_dir, train=False,
download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True)
input_shape = __image_size(train_dataset)
return train_loader, valid_loader, test_loader, input_shape
def imagenet_load_data(data_dir, batch_size, num_workers, valid_size=0.1, deterministic=False):
"""Load the ImageNet dataset.
Somewhat unconventionally, we use the ImageNet validation dataset as our test dataset,
and split the training dataset for training and validation (90/10 by default).
"""
train_dir = os.path.join(data_dir, 'train')
test_dir = os.path.join(data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
num_train = len(train_dataset)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
# Note! We must shuffle the imagenet data because the files are ordered
# by class. If we don't shuffle, the train and validation datasets will
# by mutually-exclusive
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
input_shape = __image_size(train_dataset)
worker_init_fn = __deterministic_worker_init_fn if deterministic else None
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, sampler=train_sampler,
num_workers=num_workers, pin_memory=True,
worker_init_fn=worker_init_fn)
valid_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, sampler=valid_sampler,
num_workers=num_workers, pin_memory=True,
worker_init_fn=worker_init_fn)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(test_dir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True)
return train_loader, valid_loader, test_loader, input_shape