index.html 9.16 KiB
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="../img/favicon.ico">
<title>Quantization - Neural Network Distiller</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="../css/highlight.css">
<link href="../extra.css" rel="stylesheet">
<script>
// Current page data
var mkdocs_page_name = "Quantization";
var mkdocs_page_input_path = "algo_quantization.md";
var mkdocs_page_url = "/algo_quantization/index.html";
</script>
<script src="../js/jquery-2.1.1.min.js"></script>
<script src="../js/modernizr-2.8.3.min.js"></script>
<script type="text/javascript" src="../js/highlight.pack.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-nav-search">
<a href="../index.html" class="icon icon-home"> Neural Network Distiller</a>
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1">
<a class="" href="../index.html">Home</a>
</li>
<li class="toctree-l1">
<a class="" href="../install/index.html">Installation</a>
</li>
<li class="toctree-l1">
<a class="" href="../usage/index.html">Usage</a>
</li>
<li class="toctree-l1">
<a class="" href="../schedule/index.html">Compression scheduling</a>
</li>
<li class="toctree-l1">
<span class="caption-text">Compressing models</span>
<ul class="subnav">
<li class="">
<a class="" href="../pruning/index.html">Pruning</a>
</li>
<li class="">
<a class="" href="../regularization/index.html">Regularization</a>
</li>
<li class="">
<a class="" href="../quantization/index.html">Quantization</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">Algorithms</span>
<ul class="subnav">
<li class="">
<a class="" href="../algo_pruning/index.html">Pruning</a>
</li>
<li class=" current">
<a class="current" href="index.html">Quantization</a>
<ul class="subnav">
<li class="toctree-l3"><a href="#quantization-algorithms">Quantization Algorithms</a></li>
<ul>
<li><a class="toctree-l4" href="#symmetric-linear-quantization">Symmetric Linear Quantization</a></li>
</ul>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo/index.html">Model Zoo</a>
</li>
<li class="toctree-l1">
<a class="" href="../jupyter/index.html">Jupyter notebooks</a>
</li>
<li class="toctree-l1">
<a class="" href="../design/index.html">Design</a>
</li>
</ul>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">Neural Network Distiller</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html">Docs</a> »</li>
<li>Algorithms »</li>
<li>Quantization</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="quantization-algorithms">Quantization Algorithms</h1>
<h2 id="symmetric-linear-quantization">Symmetric Linear Quantization</h2>
<p>In this method, a float value is quantized by multiplying with a numeric constant (the <strong>scale factor</strong>), hence it is <strong>Linear</strong>. We use a signed integer to represent the quantized range, with no quantization bias (or "offset") used. As a result, the floating-point range considered for quantization is <strong>symmetric</strong> with respect to zero.<br />
In the current implementation the scale factor is chosen so that the entire range of the floating-point tensor is quantized (we do not attempt to remove outliers).<br />
Let us denote the original floating-point tensor by <script type="math/tex">x_f</script>, the quantized tensor by <script type="math/tex">x_q</script>, the scale factor by <script type="math/tex">q_x</script> and the number of bits used for quantization by <script type="math/tex">n</script>. Then, we get:
<script type="math/tex; mode=display">q_x = \frac{2^{n-1}-1}{\max|x|}</script>
<script type="math/tex; mode=display">x_q = round(q_x x_f)</script>
(The <script type="math/tex">round</script> operation is round-to-nearest-integer) </p>
<p>Let's see how a <strong>convolution</strong> or <strong>fully-connected (FC)</strong> layer is quantized using this method: (we denote input, output, weights and bias with <script type="math/tex">x, y, w</script> and <script type="math/tex">b</script> respectively)
<script type="math/tex; mode=display">y_f = \sum{x_f w_f} + b_f = \sum{\frac{x_q}{q_x} \frac{w_q}{q_w}} + \frac{b_q}{q_b} = \frac{1}{q_x q_w} \sum{(x_q w_q + \frac{q_b}{q_x q_w}b_q)}</script>
<script type="math/tex; mode=display">y_q = round(q_y y_f) = round(\frac{q_y}{q_x q_w} \sum{(x_q w_q + \frac{q_b}{q_x q_w}b_q)})</script>
Note how the bias has to be re-scaled to match the scale of the summation.</p>
<h3 id="implementation">Implementation</h3>
<p>We've implemented <strong>convolution</strong> and <strong>FC</strong> using this method. </p>
<ul>
<li>They are implemented by wrapping the existing PyTorch layers with quantization and de-quantization operations. That is - the computation is done on floating-point tensors, but the values themselves are restricted to integer values. </li>
<li>All other layers are unaffected and are executed using their original FP32 implementation. </li>
<li>For weights and bias the scale factor is determined once at quantization setup ("offline"), and for activations it is determined dynamically at runtime ("online"). </li>
<li><strong>Important note:</strong> Currently, this method is implemented as <strong>inference only</strong>, with no back-propagation functionality. Hence, it can only be used to quantize a pre-trained FP32 model, with no re-training. As such, using it with <script type="math/tex">n < 8</script> is likely to lead to severe accuracy degradation for any non-trivial workload.</li>
</ul>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../model_zoo/index.html" class="btn btn-neutral float-right" title="Model Zoo">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../algo_pruning/index.html" class="btn btn-neutral" title="Pruning"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" style="cursor: pointer">
<span class="rst-current-version" data-toggle="rst-current-version">
<span><a href="../algo_pruning/index.html" style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="../model_zoo/index.html" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '..';</script>
<script src="../js/theme.js"></script>
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
<script src="../search/require.js"></script>
<script src="../search/search.js"></script>
</body>
</html>