Skip to content
Snippets Groups Projects
tutorial.ipynb 53 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
    {
      "nbformat": 4,
      "nbformat_minor": 0,
      "metadata": {
        "colab": {
          "name": "YOLOv5 Tutorial",
          "provenance": [],
          "toc_visible": true
        },
        "kernelspec": {
          "name": "python3",
          "display_name": "Python 3"
        },
        "accelerator": "GPU",
        "widgets": {
          "application/vnd.jupyter.widget-state+json": {
            "1f7df330663048998adcf8a45bc8f69b": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "HBoxModel",
              "model_module_version": "1.5.0",
              "state": {
                "_dom_classes": [],
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "HBoxModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/controls",
                "_view_module_version": "1.5.0",
                "_view_name": "HBoxView",
                "box_style": "",
                "children": [
                  "IPY_MODEL_e896e6096dd244c59d7955e2035cd729",
                  "IPY_MODEL_a6ff238c29984b24bf6d0bd175c19430",
                  "IPY_MODEL_3c085ba3f3fd4c3c8a6bb41b41ce1479"
                ],
                "layout": "IPY_MODEL_16b0c8aa6e0f427e8a54d3791abb7504"
              }
            },
            "e896e6096dd244c59d7955e2035cd729": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "HTMLModel",
              "model_module_version": "1.5.0",
              "state": {
                "_dom_classes": [],
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "HTMLModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/controls",
                "_view_module_version": "1.5.0",
                "_view_name": "HTMLView",
                "description": "",
                "description_tooltip": null,
                "layout": "IPY_MODEL_c7b2dd0f78384cad8e400b282996cdf5",
                "placeholder": "​",
                "style": "IPY_MODEL_6a27e43b0e434edd82ee63f0a91036ca",
                "value": "100%"
              }
            },
            "a6ff238c29984b24bf6d0bd175c19430": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "FloatProgressModel",
              "model_module_version": "1.5.0",
              "state": {
                "_dom_classes": [],
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "FloatProgressModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/controls",
                "_view_module_version": "1.5.0",
                "_view_name": "ProgressView",
                "bar_style": "success",
                "description": "",
                "description_tooltip": null,
                "layout": "IPY_MODEL_cce0e6c0c4ec442cb47e65c674e02e92",
                "max": 818322941,
                "min": 0,
                "orientation": "horizontal",
                "style": "IPY_MODEL_c5b9f38e2f0d4f9aa97fe87265263743",
                "value": 818322941
              }
            },
            "3c085ba3f3fd4c3c8a6bb41b41ce1479": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "HTMLModel",
              "model_module_version": "1.5.0",
              "state": {
                "_dom_classes": [],
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "HTMLModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/controls",
                "_view_module_version": "1.5.0",
                "_view_name": "HTMLView",
                "description": "",
                "description_tooltip": null,
                "layout": "IPY_MODEL_df554fb955c7454696beac5a82889386",
                "placeholder": "​",
                "style": "IPY_MODEL_74e9112a87a242f4831b7d68c7da6333",
                "value": " 780M/780M [00:05<00:00, 126MB/s]"
              }
            },
            "16b0c8aa6e0f427e8a54d3791abb7504": {
              "model_module": "@jupyter-widgets/base",
              "model_name": "LayoutModel",
              "model_module_version": "1.2.0",
              "state": {
                "_model_module": "@jupyter-widgets/base",
                "_model_module_version": "1.2.0",
                "_model_name": "LayoutModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "LayoutView",
                "align_content": null,
                "align_items": null,
                "align_self": null,
                "border": null,
                "bottom": null,
                "display": null,
                "flex": null,
                "flex_flow": null,
                "grid_area": null,
                "grid_auto_columns": null,
                "grid_auto_flow": null,
                "grid_auto_rows": null,
                "grid_column": null,
                "grid_gap": null,
                "grid_row": null,
                "grid_template_areas": null,
                "grid_template_columns": null,
                "grid_template_rows": null,
                "height": null,
                "justify_content": null,
                "justify_items": null,
                "left": null,
                "margin": null,
                "max_height": null,
                "max_width": null,
                "min_height": null,
                "min_width": null,
                "object_fit": null,
                "object_position": null,
                "order": null,
                "overflow": null,
                "overflow_x": null,
                "overflow_y": null,
                "padding": null,
                "right": null,
                "top": null,
                "visibility": null,
                "width": null
              }
            },
            "c7b2dd0f78384cad8e400b282996cdf5": {
              "model_module": "@jupyter-widgets/base",
              "model_name": "LayoutModel",
              "model_module_version": "1.2.0",
              "state": {
                "_model_module": "@jupyter-widgets/base",
                "_model_module_version": "1.2.0",
                "_model_name": "LayoutModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "LayoutView",
                "align_content": null,
                "align_items": null,
                "align_self": null,
                "border": null,
                "bottom": null,
                "display": null,
                "flex": null,
                "flex_flow": null,
                "grid_area": null,
                "grid_auto_columns": null,
                "grid_auto_flow": null,
                "grid_auto_rows": null,
                "grid_column": null,
                "grid_gap": null,
                "grid_row": null,
                "grid_template_areas": null,
                "grid_template_columns": null,
                "grid_template_rows": null,
                "height": null,
                "justify_content": null,
                "justify_items": null,
                "left": null,
                "margin": null,
                "max_height": null,
                "max_width": null,
                "min_height": null,
                "min_width": null,
                "object_fit": null,
                "object_position": null,
                "order": null,
                "overflow": null,
                "overflow_x": null,
                "overflow_y": null,
                "padding": null,
                "right": null,
                "top": null,
                "visibility": null,
                "width": null
              }
            },
            "6a27e43b0e434edd82ee63f0a91036ca": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "DescriptionStyleModel",
              "model_module_version": "1.5.0",
              "state": {
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "DescriptionStyleModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "StyleView",
                "description_width": ""
              }
            },
            "cce0e6c0c4ec442cb47e65c674e02e92": {
              "model_module": "@jupyter-widgets/base",
              "model_name": "LayoutModel",
              "model_module_version": "1.2.0",
              "state": {
                "_model_module": "@jupyter-widgets/base",
                "_model_module_version": "1.2.0",
                "_model_name": "LayoutModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "LayoutView",
                "align_content": null,
                "align_items": null,
                "align_self": null,
                "border": null,
                "bottom": null,
                "display": null,
                "flex": null,
                "flex_flow": null,
                "grid_area": null,
                "grid_auto_columns": null,
                "grid_auto_flow": null,
                "grid_auto_rows": null,
                "grid_column": null,
                "grid_gap": null,
                "grid_row": null,
                "grid_template_areas": null,
                "grid_template_columns": null,
                "grid_template_rows": null,
                "height": null,
                "justify_content": null,
                "justify_items": null,
                "left": null,
                "margin": null,
                "max_height": null,
                "max_width": null,
                "min_height": null,
                "min_width": null,
                "object_fit": null,
                "object_position": null,
                "order": null,
                "overflow": null,
                "overflow_x": null,
                "overflow_y": null,
                "padding": null,
                "right": null,
                "top": null,
                "visibility": null,
                "width": null
              }
            },
            "c5b9f38e2f0d4f9aa97fe87265263743": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "ProgressStyleModel",
              "model_module_version": "1.5.0",
              "state": {
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "ProgressStyleModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "StyleView",
                "bar_color": null,
                "description_width": ""
              }
            },
            "df554fb955c7454696beac5a82889386": {
              "model_module": "@jupyter-widgets/base",
              "model_name": "LayoutModel",
              "model_module_version": "1.2.0",
              "state": {
                "_model_module": "@jupyter-widgets/base",
                "_model_module_version": "1.2.0",
                "_model_name": "LayoutModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "LayoutView",
                "align_content": null,
                "align_items": null,
                "align_self": null,
                "border": null,
                "bottom": null,
                "display": null,
                "flex": null,
                "flex_flow": null,
                "grid_area": null,
                "grid_auto_columns": null,
                "grid_auto_flow": null,
                "grid_auto_rows": null,
                "grid_column": null,
                "grid_gap": null,
                "grid_row": null,
                "grid_template_areas": null,
                "grid_template_columns": null,
                "grid_template_rows": null,
                "height": null,
                "justify_content": null,
                "justify_items": null,
                "left": null,
                "margin": null,
                "max_height": null,
                "max_width": null,
                "min_height": null,
                "min_width": null,
                "object_fit": null,
                "object_position": null,
                "order": null,
                "overflow": null,
                "overflow_x": null,
                "overflow_y": null,
                "padding": null,
                "right": null,
                "top": null,
                "visibility": null,
                "width": null
              }
            },
            "74e9112a87a242f4831b7d68c7da6333": {
              "model_module": "@jupyter-widgets/controls",
              "model_name": "DescriptionStyleModel",
              "model_module_version": "1.5.0",
              "state": {
                "_model_module": "@jupyter-widgets/controls",
                "_model_module_version": "1.5.0",
                "_model_name": "DescriptionStyleModel",
                "_view_count": null,
                "_view_module": "@jupyter-widgets/base",
                "_view_module_version": "1.2.0",
                "_view_name": "StyleView",
                "description_width": ""
              }
            }
          }
        }
      },
      "cells": [
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "t6MPjfT5NrKQ"
          },
          "source": [
            "<div align=\"center\">\n",
            "\n",
            "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
            "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
            "\n",
            "\n",
            "<br>\n",
            "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
            "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
            "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
            "<br>\n",
            "\n",
            "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
            "\n",
            "</div>"
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "7mGmQbAO5pQb"
          },
          "source": [
            "# Setup\n",
            "\n",
            "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
          ]
        },
        {
          "cell_type": "code",
          "metadata": {
            "id": "wbvMlHd_QwMG",
            "colab": {
              "base_uri": "https://localhost:8080/"
            },
            "outputId": "f9f016ad-3dcf-4bd2-e1c3-d5b79efc6f32"
          },
          "source": [
            "!git clone https://github.com/ultralytics/yolov5  # clone\n",
            "%cd yolov5\n",
            "%pip install -qr requirements.txt  # install\n",
            "\n",
            "import torch\n",
            "import utils\n",
            "display = utils.notebook_init()  # checks"
          ],
          "execution_count": null,
          "outputs": [
            {
              "output_type": "stream",
              "name": "stderr",
              "text": [
                "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
              ]
            },
            {
              "output_type": "stream",
              "name": "stdout",
              "text": [
                "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
              ]
            }
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "4JnkELT0cIJg"
          },
          "source": [
            "# 1. Detect\n",
            "\n",
            "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
            "\n",
            "```shell\n",
            "python detect.py --source 0  # webcam\n",
            "                          img.jpg  # image \n",
            "                          vid.mp4  # video\n",
            "                          screen  # screenshot\n",
            "                          path/  # directory\n",
            "                         'path/*.jpg'  # glob\n",
            "                         'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
            "                         'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
            "```"
          ]
        },
        {
          "cell_type": "code",
          "metadata": {
            "id": "zR9ZbuQCH7FX",
            "colab": {
              "base_uri": "https://localhost:8080/"
            },
            "outputId": "b4db5c49-f501-4505-cf0d-a1d35236c485"
          },
          "source": [
            "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
            "# display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
          ],
          "execution_count": null,
          "outputs": [
            {
              "output_type": "stream",
              "name": "stdout",
              "text": [
                "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n",
                "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
                "\n",
                "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
                "100% 14.1M/14.1M [00:00<00:00, 116MB/s] \n",
                "\n",
                "Fusing layers... \n",
                "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
                "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 17.0ms\n",
                "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 14.3ms\n",
                "Speed: 0.5ms pre-process, 15.7ms inference, 18.6ms NMS per image at shape (1, 3, 640, 640)\n",
                "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
              ]
            }
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "hkAzDWJ7cWTr"
          },
          "source": [
            "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
            "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "0eq1SMWl6Sfn"
          },
          "source": [
            "# 2. Validate\n",
            "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
          ]
        },
        {
          "cell_type": "code",
          "metadata": {
            "id": "WQPtK1QYVaD_",
            "colab": {
              "base_uri": "https://localhost:8080/",
              "height": 49,
              "referenced_widgets": [
                "1f7df330663048998adcf8a45bc8f69b",
                "e896e6096dd244c59d7955e2035cd729",
                "a6ff238c29984b24bf6d0bd175c19430",
                "3c085ba3f3fd4c3c8a6bb41b41ce1479",
                "16b0c8aa6e0f427e8a54d3791abb7504",
                "c7b2dd0f78384cad8e400b282996cdf5",
                "6a27e43b0e434edd82ee63f0a91036ca",
                "cce0e6c0c4ec442cb47e65c674e02e92",
                "c5b9f38e2f0d4f9aa97fe87265263743",
                "df554fb955c7454696beac5a82889386",
                "74e9112a87a242f4831b7d68c7da6333"
              ]
            },
            "outputId": "c7d0a0d2-abfb-44c3-d60d-f99d0e7aabad"
          },
          "source": [
            "# Download COCO val\n",
            "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')  # download (780M - 5000 images)\n",
            "!unzip -q tmp.zip -d ../datasets && rm tmp.zip  # unzip"
          ],
          "execution_count": null,
          "outputs": [
            {
              "output_type": "display_data",
              "data": {
                "text/plain": [
                  "  0%|          | 0.00/780M [00:00<?, ?B/s]"
                ],
                "application/vnd.jupyter.widget-view+json": {
                  "version_major": 2,
                  "version_minor": 0,
                  "model_id": "1f7df330663048998adcf8a45bc8f69b"
                }
              },
              "metadata": {}
            }
          ]
        },
        {
          "cell_type": "code",
          "metadata": {
            "id": "X58w8JLpMnjH",
            "colab": {
              "base_uri": "https://localhost:8080/"
            },
            "outputId": "5fc61358-7bc5-4310-a310-9059f66c6322"
          },
          "source": [
            "# Validate YOLOv5s on COCO val\n",
            "!python val.py --weights yolov5s.pt --data coco.yaml --img 640 --half"
          ],
          "execution_count": null,
          "outputs": [
            {
              "output_type": "stream",
              "name": "stdout",
              "text": [
                "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
                "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
                "\n",
                "Fusing layers... \n",
                "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
                "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00, 1977.30it/s]\n",
                "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
                "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 157/157 [01:12<00:00,  2.17it/s]\n",
                "                   all       5000      36335       0.67      0.521      0.566      0.371\n",
                "Speed: 0.1ms pre-process, 2.9ms inference, 2.0ms NMS per image at shape (32, 3, 640, 640)\n",
                "\n",
                "Evaluating pycocotools mAP... saving runs/val/exp/yolov5s_predictions.json...\n",
                "loading annotations into memory...\n",
                "Done (t=0.43s)\n",
                "creating index...\n",
                "index created!\n",
                "Loading and preparing results...\n",
                "DONE (t=5.85s)\n",
                "creating index...\n",
                "index created!\n",
                "Running per image evaluation...\n",
                "Evaluate annotation type *bbox*\n",
                "DONE (t=82.22s).\n",
                "Accumulating evaluation results...\n",
                "DONE (t=14.92s).\n",
                " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.374\n",
                " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.572\n",
                " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.402\n",
                " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211\n",
                " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423\n",
                " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489\n",
                " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.311\n",
                " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.516\n",
                " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.566\n",
                " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378\n",
                " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.625\n",
                " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.723\n",
                "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
              ]
            }
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "ZY2VXXXu74w5"
          },
          "source": [
            "# 3. Train\n",
            "\n",
            "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
            "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
            "<br><br>\n",
            "\n",
            "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
            "\n",
            "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
            "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
            "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
            "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
            "<br><br>\n",
            "\n",
            "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
            "\n",
            "## Train on Custom Data with Roboflow 🌟 NEW\n",
            "\n",
            "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
            "\n",
            "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
            "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
            "<br>\n",
            "\n",
            "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
          ]
        },
        {
          "cell_type": "code",
          "source": [
            "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
            "logger = 'ClearML' #@param ['ClearML', 'Comet', 'TensorBoard']\n",
            "\n",
            "if logger == 'ClearML':\n",
            "  %pip install -q clearml\n",
            "  import clearml; clearml.browser_login()\n",
            "elif logger == 'Comet':\n",
            "  %pip install -q comet_ml\n",
            "  import comet_ml; comet_ml.init()\n",
            "elif logger == 'TensorBoard':\n",
            "  %load_ext tensorboard\n",
            "  %tensorboard --logdir runs/train"
          ],
          "metadata": {
            "id": "i3oKtE4g-aNn"
          },
          "execution_count": null,
          "outputs": []
        },
        {
          "cell_type": "code",
          "metadata": {
            "id": "1NcFxRcFdJ_O",
            "colab": {
              "base_uri": "https://localhost:8080/"
            },
            "outputId": "721b9028-767f-4a05-c964-692c245f7398"
          },
          "source": [
            "# Train YOLOv5s on COCO128 for 3 epochs\n",
            "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
          ],
          "execution_count": null,
          "outputs": [
            {
              "output_type": "stream",
              "name": "stdout",
              "text": [
                "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
                "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
                "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
                "\n",
                "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
                "\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
                "\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
                "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
                "\n",
                "Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
                "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
                "100% 6.66M/6.66M [00:00<00:00, 261MB/s]\n",
                "Dataset download success ✅ (0.3s), saved to \u001b[1m/content/datasets\u001b[0m\n",
                "\n",
                "                 from  n    params  module                                  arguments                     \n",
                "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
                "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
                "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
                "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
                "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
                "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
                "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
                "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
                "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
                "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
                " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
                " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
                " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
                " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
                " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
                " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
                " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
                " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
                " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
                " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
                " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
                " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
                " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
                " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
                " 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
                "Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n",
                "\n",
                "Transferred 349/349 items from yolov5s.pt\n",
                "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
                "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
                "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
                "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1911.57it/s]\n",
                "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
                "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 229.69it/s]\n",
                "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
                "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 97.70it/s] \n",
                "\n",
                "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
                "Plotting labels to runs/train/exp/labels.jpg... \n",
                "Image sizes 640 train, 640 val\n",
                "Using 2 dataloader workers\n",
                "Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
                "Starting training for 3 epochs...\n",
                "\n",
                "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
                "        0/2      3.74G    0.04618    0.07207      0.017        232        640: 100% 8/8 [00:07<00:00,  1.10it/s]\n",
                "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  2.28it/s]\n",
                "                   all        128        929      0.672      0.594      0.682      0.451\n",
                "\n",
                "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
                "        1/2      5.36G    0.04623    0.06888    0.01821        201        640: 100% 8/8 [00:02<00:00,  3.29it/s]\n",
                "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  3.17it/s]\n",
                "                   all        128        929      0.721      0.639      0.724       0.48\n",
                "\n",
                "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
                "        2/2      5.36G    0.04361    0.06479    0.01698        227        640: 100% 8/8 [00:02<00:00,  3.46it/s]\n",
                "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  3.11it/s]\n",
                "                   all        128        929      0.758      0.641      0.731      0.487\n",
                "\n",
                "3 epochs completed in 0.005 hours.\n",
                "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
                "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n",
                "\n",
                "Validating runs/train/exp/weights/best.pt...\n",
                "Fusing layers... \n",
                "Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
                "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:03<00:00,  1.05it/s]\n",
                "                   all        128        929      0.757      0.641      0.732      0.487\n",
                "                person        128        254       0.86      0.705      0.804      0.528\n",
                "               bicycle        128          6      0.773      0.578      0.725      0.426\n",
                "                   car        128         46      0.658      0.435      0.554      0.239\n",
                "            motorcycle        128          5       0.59        0.8      0.837      0.635\n",
                "              airplane        128          6          1      0.996      0.995      0.696\n",
                "                   bus        128          7      0.635      0.714      0.756      0.666\n",
                "                 train        128          3      0.691      0.333      0.753      0.511\n",
                "                 truck        128         12      0.604      0.333      0.472       0.26\n",
                "                  boat        128          6      0.941      0.333       0.46      0.183\n",
                "         traffic light        128         14      0.557      0.183      0.302      0.214\n",
                "             stop sign        128          2      0.827          1      0.995      0.846\n",
                "                 bench        128          9       0.79      0.556      0.677      0.318\n",
                "                  bird        128         16      0.962          1      0.995      0.663\n",
                "                   cat        128          4      0.867          1      0.995      0.754\n",
                "                   dog        128          9          1      0.649      0.903      0.654\n",
                "                 horse        128          2      0.853          1      0.995      0.622\n",
                "              elephant        128         17      0.908      0.882      0.934      0.698\n",
                "                  bear        128          1      0.697          1      0.995      0.995\n",
                "                 zebra        128          4      0.867          1      0.995      0.905\n",
                "               giraffe        128          9      0.788      0.829      0.912      0.701\n",
                "              backpack        128          6      0.841        0.5      0.738      0.311\n",
                "              umbrella        128         18      0.786      0.815      0.859       0.48\n",
                "               handbag        128         19      0.772      0.263      0.366      0.216\n",
                "                   tie        128          7      0.975      0.714       0.77      0.491\n",
                "              suitcase        128          4      0.643       0.75      0.912      0.563\n",
                "               frisbee        128          5       0.72        0.8       0.76      0.717\n",
                "                  skis        128          1      0.748          1      0.995        0.3\n",
                "             snowboard        128          7      0.827      0.686      0.833       0.57\n",
                "           sports ball        128          6      0.637      0.667      0.602      0.311\n",
                "                  kite        128         10      0.645        0.6      0.594      0.224\n",
                "          baseball bat        128          4      0.519      0.278      0.468      0.205\n",
                "        baseball glove        128          7      0.483      0.429      0.465      0.278\n",
                "            skateboard        128          5      0.923        0.6      0.687      0.493\n",
                "         tennis racket        128          7      0.774      0.429      0.544      0.333\n",
                "                bottle        128         18      0.577      0.379      0.551      0.275\n",
                "            wine glass        128         16      0.715      0.875      0.893      0.511\n",
                "                   cup        128         36      0.843      0.667      0.833      0.531\n",
                "                  fork        128          6      0.998      0.333       0.45      0.315\n",
                "                 knife        128         16       0.77      0.688      0.695      0.399\n",
                "                 spoon        128         22      0.839      0.473      0.638      0.383\n",
                "                  bowl        128         28      0.765      0.583      0.715      0.512\n",
                "                banana        128          1      0.903          1      0.995      0.301\n",
                "              sandwich        128          2          1          0      0.359      0.301\n",
                "                orange        128          4      0.718       0.75      0.912      0.581\n",
                "              broccoli        128         11      0.545      0.364       0.43      0.319\n",
                "                carrot        128         24       0.62      0.625      0.724      0.495\n",
                "               hot dog        128          2      0.385          1      0.828      0.762\n",
                "                 pizza        128          5      0.833          1      0.962      0.725\n",
                "                 donut        128         14      0.631          1       0.96      0.833\n",
                "                  cake        128          4      0.871          1      0.995       0.83\n",
                "                 chair        128         35      0.583        0.6      0.608      0.318\n",
                "                 couch        128          6      0.909      0.667      0.813      0.543\n",
                "          potted plant        128         14      0.745      0.786      0.822       0.48\n",
                "                   bed        128          3      0.973      0.333      0.753       0.41\n",
                "          dining table        128         13      0.821      0.356      0.577      0.342\n",
                "                toilet        128          2          1      0.949      0.995      0.797\n",
                "                    tv        128          2      0.566          1      0.995      0.796\n",
                "                laptop        128          3          1          0       0.59      0.311\n",
                "                 mouse        128          2          1          0      0.105     0.0527\n",
                "                remote        128          8          1      0.623      0.634      0.538\n",
                "            cell phone        128          8      0.565      0.375      0.399      0.179\n",
                "             microwave        128          3      0.709          1      0.995      0.736\n",
                "                  oven        128          5      0.328        0.4       0.43      0.282\n",
                "                  sink        128          6      0.438      0.333      0.339      0.266\n",
                "          refrigerator        128          5      0.564        0.8      0.798      0.535\n",
                "                  book        128         29      0.597      0.256      0.351      0.155\n",
                "                 clock        128          9      0.763      0.889      0.934      0.737\n",
                "                  vase        128          2      0.331          1      0.995      0.895\n",
                "              scissors        128          1          1          0      0.497     0.0552\n",
                "            teddy bear        128         21      0.857       0.57      0.837      0.544\n",
                "            toothbrush        128          5      0.799          1      0.928      0.556\n",
                "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
              ]
            }
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "15glLzbQx5u0"
          },
          "source": [
            "# 4. Visualize"
          ]
        },
        {
          "cell_type": "markdown",
          "source": [
            "## Comet Logging and Visualization 🌟 NEW\n",
            "\n",
            "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
            "\n",
            "Getting started is easy:\n",
            "```shell\n",
            "pip install comet_ml  # 1. install\n",
            "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
            "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
            "```\n",
            "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
            "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
            "\n",
            "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
            "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
          ],
          "metadata": {
            "id": "nWOsI5wJR1o3"
          }
        },
        {
          "cell_type": "markdown",
          "source": [
            "## ClearML Logging and Automation 🌟 NEW\n",
            "\n",
            "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
            "\n",
            "- `pip install clearml`\n",
            "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
            "\n",
            "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
            "\n",
            "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
            "\n",
            "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
            "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
          ],
          "metadata": {
            "id": "Lay2WsTjNJzP"
          }
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "-WPvRbS5Swl6"
          },
          "source": [
            "## Local Logging\n",
            "\n",
            "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
            "\n",
            "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
            "\n",
            "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "Zelyeqbyt3GD"
          },
          "source": [
            "# Environments\n",
            "\n",
            "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
            "\n",
            "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
            "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
            "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
            "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "6Qu7Iesl0p54"
          },
          "source": [
            "# Status\n",
            "\n",
            "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
            "\n",
            "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
          ]
        },
        {
          "cell_type": "markdown",
          "metadata": {
            "id": "IEijrePND_2I"
          },
          "source": [
            "# Appendix\n",
            "\n",
            "Additional content below."
          ]
        },
        {
          "cell_type": "code",
          "metadata": {
            "id": "GMusP4OAxFu6"
          },
          "source": [
            "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
            "import torch\n",
            "\n",
            "model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True)  # yolov5n - yolov5x6 or custom\n",
            "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
            "results = model(im)  # inference\n",
            "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
          ],
          "execution_count": null,
          "outputs": []
        }
      ]
    }