Skip to content
Snippets Groups Projects
export.py 31.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    """
    Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
    
    Format                      | `export.py --include`         | Model
    ---                         | ---                           | ---
    PyTorch                     | -                             | yolov5s.pt
    TorchScript                 | `torchscript`                 | yolov5s.torchscript
    ONNX                        | `onnx`                        | yolov5s.onnx
    OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
    TensorRT                    | `engine`                      | yolov5s.engine
    CoreML                      | `coreml`                      | yolov5s.mlmodel
    TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
    TensorFlow GraphDef         | `pb`                          | yolov5s.pb
    TensorFlow Lite             | `tflite`                      | yolov5s.tflite
    TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
    TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
    PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/
    
    Requirements:
        $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
        $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
    
    Usage:
        $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
    
    Inference:
        $ python detect.py --weights yolov5s.pt                 # PyTorch
                                     yolov5s.torchscript        # TorchScript
                                     yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                     yolov5s_openvino_model     # OpenVINO
                                     yolov5s.engine             # TensorRT
                                     yolov5s.mlmodel            # CoreML (macOS-only)
                                     yolov5s_saved_model        # TensorFlow SavedModel
                                     yolov5s.pb                 # TensorFlow GraphDef
                                     yolov5s.tflite             # TensorFlow Lite
                                     yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                                     yolov5s_paddle_model       # PaddlePaddle
    
    TensorFlow.js:
        $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
        $ npm install
        $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
        $ npm start
    """
    
    import argparse
    import contextlib
    import json
    import os
    import platform
    import re
    import subprocess
    import sys
    import time
    import warnings
    from pathlib import Path
    
    import pandas as pd
    import torch
    from torch.utils.mobile_optimizer import optimize_for_mobile
    
    FILE = Path(__file__).resolve()
    ROOT = FILE.parents[0]  # YOLOv5 root directory
    if str(ROOT) not in sys.path:
        sys.path.append(str(ROOT))  # add ROOT to PATH
    if platform.system() != 'Windows':
        ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
    
    from models.experimental import attempt_load
    from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
    from utils.dataloaders import LoadImages
    from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
                               check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
    from utils.torch_utils import select_device, smart_inference_mode
    
    MACOS = platform.system() == 'Darwin'  # macOS environment
    
    
    def export_formats():
        # YOLOv5 export formats
        x = [
            ['PyTorch', '-', '.pt', True, True],
            ['TorchScript', 'torchscript', '.torchscript', True, True],
            ['ONNX', 'onnx', '.onnx', True, True],
            ['OpenVINO', 'openvino', '_openvino_model', True, False],
            ['TensorRT', 'engine', '.engine', False, True],
            ['CoreML', 'coreml', '.mlmodel', True, False],
            ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
            ['TensorFlow GraphDef', 'pb', '.pb', True, True],
            ['TensorFlow Lite', 'tflite', '.tflite', True, False],
            ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
            ['TensorFlow.js', 'tfjs', '_web_model', False, False],
            ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
        return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
    
    
    def try_export(inner_func):
        # YOLOv5 export decorator, i..e @try_export
        inner_args = get_default_args(inner_func)
    
        def outer_func(*args, **kwargs):
            prefix = inner_args['prefix']
            try:
                with Profile() as dt:
                    f, model = inner_func(*args, **kwargs)
                LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
                return f, model
            except Exception as e:
                LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
                return None, None
    
        return outer_func
    
    
    @try_export
    def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
        # YOLOv5 TorchScript model export
        LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
        f = file.with_suffix('.torchscript')
    
        ts = torch.jit.trace(model, im, strict=False)
        d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names}
        extra_files = {'config.txt': json.dumps(d)}  # torch._C.ExtraFilesMap()
        if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
            optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
        else:
            ts.save(str(f), _extra_files=extra_files)
        return f, None
    
    
    @try_export
    def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
        # YOLOv5 ONNX export
        check_requirements('onnx>=1.12.0')
        import onnx
    
        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')
    
        output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
        if dynamic:
            dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}}  # shape(1,3,640,640)
            if isinstance(model, SegmentationModel):
                dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'}  # shape(1,32,160,160)
            elif isinstance(model, DetectionModel):
                dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
    
        torch.onnx.export(
            model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
            im.cpu() if dynamic else im,
            f,
            verbose=False,
            opset_version=opset,
            do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
            input_names=['images'],
            output_names=output_names,
            dynamic_axes=dynamic or None)
    
        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model
    
        # Metadata
        d = {'stride': int(max(model.stride)), 'names': model.names}
        for k, v in d.items():
            meta = model_onnx.metadata_props.add()
            meta.key, meta.value = k, str(v)
        onnx.save(model_onnx, f)
    
        # Simplify
        if simplify:
            try:
                cuda = torch.cuda.is_available()
                check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
                import onnxsim
    
                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(model_onnx)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')
        return f, model_onnx
    
    
    @try_export
    def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
        # YOLOv5 OpenVINO export
        check_requirements('openvino-dev')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
        import openvino.inference_engine as ie
    
        LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
        f = str(file).replace('.pt', f'_openvino_model{os.sep}')
    
        args = [
            'mo',
            '--input_model',
            str(file.with_suffix('.onnx')),
            '--output_dir',
            f,
            '--data_type',
            ('FP16' if half else 'FP32'),]
        subprocess.run(args, check=True, env=os.environ)  # export
        yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata)  # add metadata.yaml
        return f, None
    
    
    @try_export
    def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
        # YOLOv5 Paddle export
        check_requirements(('paddlepaddle', 'x2paddle'))
        import x2paddle
        from x2paddle.convert import pytorch2paddle
    
        LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
        f = str(file).replace('.pt', f'_paddle_model{os.sep}')
    
        pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im])  # export
        yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata)  # add metadata.yaml
        return f, None
    
    
    @try_export
    def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
        # YOLOv5 CoreML export
        check_requirements('coremltools')
        import coremltools as ct
    
        LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
        f = file.with_suffix('.mlmodel')
    
        ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
        ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
        bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
        if bits < 32:
            if MACOS:  # quantization only supported on macOS
                with warnings.catch_warnings():
                    warnings.filterwarnings('ignore', category=DeprecationWarning)  # suppress numpy==1.20 float warning
                    ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
            else:
                print(f'{prefix} quantization only supported on macOS, skipping...')
        ct_model.save(f)
        return f, ct_model
    
    
    @try_export
    def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
        # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
        assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
        try:
            import tensorrt as trt
        except Exception:
            if platform.system() == 'Linux':
                check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
            import tensorrt as trt
    
        if trt.__version__[0] == '7':  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
            grid = model.model[-1].anchor_grid
            model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
            export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
            model.model[-1].anchor_grid = grid
        else:  # TensorRT >= 8
            check_version(trt.__version__, '8.0.0', hard=True)  # require tensorrt>=8.0.0
            export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
        onnx = file.with_suffix('.onnx')
    
        LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
        assert onnx.exists(), f'failed to export ONNX file: {onnx}'
        f = file.with_suffix('.engine')  # TensorRT engine file
        logger = trt.Logger(trt.Logger.INFO)
        if verbose:
            logger.min_severity = trt.Logger.Severity.VERBOSE
    
        builder = trt.Builder(logger)
        config = builder.create_builder_config()
        config.max_workspace_size = workspace * 1 << 30
        # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)  # fix TRT 8.4 deprecation notice
    
        flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
        network = builder.create_network(flag)
        parser = trt.OnnxParser(network, logger)
        if not parser.parse_from_file(str(onnx)):
            raise RuntimeError(f'failed to load ONNX file: {onnx}')
    
        inputs = [network.get_input(i) for i in range(network.num_inputs)]
        outputs = [network.get_output(i) for i in range(network.num_outputs)]
        for inp in inputs:
            LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
        for out in outputs:
            LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
    
        if dynamic:
            if im.shape[0] <= 1:
                LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
            profile = builder.create_optimization_profile()
            for inp in inputs:
                profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
            config.add_optimization_profile(profile)
    
        LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
        if builder.platform_has_fast_fp16 and half:
            config.set_flag(trt.BuilderFlag.FP16)
        with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
            t.write(engine.serialize())
        return f, None
    
    
    @try_export
    def export_saved_model(model,
                           im,
                           file,
                           dynamic,
                           tf_nms=False,
                           agnostic_nms=False,
                           topk_per_class=100,
                           topk_all=100,
                           iou_thres=0.45,
                           conf_thres=0.25,
                           keras=False,
                           prefix=colorstr('TensorFlow SavedModel:')):
        # YOLOv5 TensorFlow SavedModel export
        try:
            import tensorflow as tf
        except Exception:
            check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
            import tensorflow as tf
        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
    
        from models.tf import TFModel
    
        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = str(file).replace('.pt', '_saved_model')
        batch_size, ch, *imgsz = list(im.shape)  # BCHW
    
        tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
        im = tf.zeros((batch_size, *imgsz, ch))  # BHWC order for TensorFlow
        _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
        inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
        outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
        keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
        keras_model.trainable = False
        keras_model.summary()
        if keras:
            keras_model.save(f, save_format='tf')
        else:
            spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
            m = tf.function(lambda x: keras_model(x))  # full model
            m = m.get_concrete_function(spec)
            frozen_func = convert_variables_to_constants_v2(m)
            tfm = tf.Module()
            tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
            tfm.__call__(im)
            tf.saved_model.save(tfm,
                                f,
                                options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
                                    tf.__version__, '2.6') else tf.saved_model.SaveOptions())
        return f, keras_model
    
    
    @try_export
    def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
        # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
        import tensorflow as tf
        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
    
        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = file.with_suffix('.pb')
    
        m = tf.function(lambda x: keras_model(x))  # full model
        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
        frozen_func = convert_variables_to_constants_v2(m)
        frozen_func.graph.as_graph_def()
        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
        return f, None
    
    
    @try_export
    def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
        # YOLOv5 TensorFlow Lite export
        import tensorflow as tf
    
        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        batch_size, ch, *imgsz = list(im.shape)  # BCHW
        f = str(file).replace('.pt', '-fp16.tflite')
    
        converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
        converter.target_spec.supported_types = [tf.float16]
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        if int8:
            from models.tf import representative_dataset_gen
            dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
            converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
            converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
            converter.target_spec.supported_types = []
            converter.inference_input_type = tf.uint8  # or tf.int8
            converter.inference_output_type = tf.uint8  # or tf.int8
            converter.experimental_new_quantizer = True
            f = str(file).replace('.pt', '-int8.tflite')
        if nms or agnostic_nms:
            converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
    
        tflite_model = converter.convert()
        open(f, 'wb').write(tflite_model)
        return f, None
    
    
    @try_export
    def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
        # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
        cmd = 'edgetpu_compiler --version'
        help_url = 'https://coral.ai/docs/edgetpu/compiler/'
        assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
        if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
            LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
            sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
            for c in (
                    'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
                    'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
                    'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
                subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
        ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
    
        LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
        f = str(file).replace('.pt', '-int8_edgetpu.tflite')  # Edge TPU model
        f_tfl = str(file).replace('.pt', '-int8.tflite')  # TFLite model
    
        subprocess.run([
            'edgetpu_compiler',
            '-s',
            '-d',
            '-k',
            '10',
            '--out_dir',
            str(file.parent),
            f_tfl,], check=True)
        return f, None
    
    
    @try_export
    def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')):
        # YOLOv5 TensorFlow.js export
        check_requirements('tensorflowjs')
        import tensorflowjs as tfjs
    
        LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
        f = str(file).replace('.pt', '_web_model')  # js dir
        f_pb = file.with_suffix('.pb')  # *.pb path
        f_json = f'{f}/model.json'  # *.json path
    
        args = [
            'tensorflowjs_converter',
            '--input_format=tf_frozen_model',
            '--quantize_uint8' if int8 else '',
            '--output_node_names=Identity,Identity_1,Identity_2,Identity_3',
            str(f_pb),
            str(f),]
        subprocess.run([arg for arg in args if arg], check=True)
    
        json = Path(f_json).read_text()
        with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
            subst = re.sub(
                r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
                r'"Identity_1": {"name": "Identity_1"}, '
                r'"Identity_2": {"name": "Identity_2"}, '
                r'"Identity_3": {"name": "Identity_3"}}}', json)
            j.write(subst)
        return f, None
    
    
    def add_tflite_metadata(file, metadata, num_outputs):
        # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
        with contextlib.suppress(ImportError):
            # check_requirements('tflite_support')
            from tflite_support import flatbuffers
            from tflite_support import metadata as _metadata
            from tflite_support import metadata_schema_py_generated as _metadata_fb
    
            tmp_file = Path('/tmp/meta.txt')
            with open(tmp_file, 'w') as meta_f:
                meta_f.write(str(metadata))
    
            model_meta = _metadata_fb.ModelMetadataT()
            label_file = _metadata_fb.AssociatedFileT()
            label_file.name = tmp_file.name
            model_meta.associatedFiles = [label_file]
    
            subgraph = _metadata_fb.SubGraphMetadataT()
            subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
            subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
            model_meta.subgraphMetadata = [subgraph]
    
            b = flatbuffers.Builder(0)
            b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
            metadata_buf = b.Output()
    
            populator = _metadata.MetadataPopulator.with_model_file(file)
            populator.load_metadata_buffer(metadata_buf)
            populator.load_associated_files([str(tmp_file)])
            populator.populate()
            tmp_file.unlink()
    
    
    @smart_inference_mode()
    def run(
            data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
            weights=ROOT / 'yolov5s.pt',  # weights path
            imgsz=(640, 640),  # image (height, width)
            batch_size=1,  # batch size
            device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
            include=('torchscript', 'onnx'),  # include formats
            half=False,  # FP16 half-precision export
            inplace=False,  # set YOLOv5 Detect() inplace=True
            keras=False,  # use Keras
            optimize=False,  # TorchScript: optimize for mobile
            int8=False,  # CoreML/TF INT8 quantization
            dynamic=False,  # ONNX/TF/TensorRT: dynamic axes
            simplify=False,  # ONNX: simplify model
            opset=12,  # ONNX: opset version
            verbose=False,  # TensorRT: verbose log
            workspace=4,  # TensorRT: workspace size (GB)
            nms=False,  # TF: add NMS to model
            agnostic_nms=False,  # TF: add agnostic NMS to model
            topk_per_class=100,  # TF.js NMS: topk per class to keep
            topk_all=100,  # TF.js NMS: topk for all classes to keep
            iou_thres=0.45,  # TF.js NMS: IoU threshold
            conf_thres=0.25,  # TF.js NMS: confidence threshold
    ):
        t = time.time()
        include = [x.lower() for x in include]  # to lowercase
        fmts = tuple(export_formats()['Argument'][1:])  # --include arguments
        flags = [x in include for x in fmts]
        assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
        jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags  # export booleans
        file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)  # PyTorch weights
    
        # Load PyTorch model
        device = select_device(device)
        if half:
            assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
            assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
        model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model
    
        # Checks
        imgsz *= 2 if len(imgsz) == 1 else 1  # expand
        if optimize:
            assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
    
        # Input
        gs = int(max(model.stride))  # grid size (max stride)
        imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
        im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
    
        # Update model
        model.eval()
        for k, m in model.named_modules():
            if isinstance(m, Detect):
                m.inplace = inplace
                m.dynamic = dynamic
                m.export = True
    
        for _ in range(2):
            y = model(im)  # dry runs
        if half and not coreml:
            im, model = im.half(), model.half()  # to FP16
        shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
        metadata = {'stride': int(max(model.stride)), 'names': model.names}  # model metadata
        LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
    
        # Exports
        f = [''] * len(fmts)  # exported filenames
        warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
        if jit:  # TorchScript
            f[0], _ = export_torchscript(model, im, file, optimize)
        if engine:  # TensorRT required before ONNX
            f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
        if onnx or xml:  # OpenVINO requires ONNX
            f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
        if xml:  # OpenVINO
            f[3], _ = export_openvino(file, metadata, half)
        if coreml:  # CoreML
            f[4], _ = export_coreml(model, im, file, int8, half)
        if any((saved_model, pb, tflite, edgetpu, tfjs)):  # TensorFlow formats
            assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
            assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
            f[5], s_model = export_saved_model(model.cpu(),
                                               im,
                                               file,
                                               dynamic,
                                               tf_nms=nms or agnostic_nms or tfjs,
                                               agnostic_nms=agnostic_nms or tfjs,
                                               topk_per_class=topk_per_class,
                                               topk_all=topk_all,
                                               iou_thres=iou_thres,
                                               conf_thres=conf_thres,
                                               keras=keras)
            if pb or tfjs:  # pb prerequisite to tfjs
                f[6], _ = export_pb(s_model, file)
            if tflite or edgetpu:
                f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
                if edgetpu:
                    f[8], _ = export_edgetpu(file)
                add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
            if tfjs:
                f[9], _ = export_tfjs(file, int8)
        if paddle:  # PaddlePaddle
            f[10], _ = export_paddle(model, im, file, metadata)
    
        # Finish
        f = [str(x) for x in f if x]  # filter out '' and None
        if any(f):
            cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel))  # type
            det &= not seg  # segmentation models inherit from SegmentationModel(DetectionModel)
            dir = Path('segment' if seg else 'classify' if cls else '')
            h = '--half' if half else ''  # --half FP16 inference arg
            s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \
                '# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else ''
            LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
                        f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
                        f"\nDetect:          python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
                        f"\nValidate:        python {dir / 'val.py'} --weights {f[-1]} {h}"
                        f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')  {s}"
                        f'\nVisualize:       https://netron.app')
        return f  # return list of exported files/dirs
    
    
    def parse_opt(known=False):
        parser = argparse.ArgumentParser()
        parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
        parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
        parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
        parser.add_argument('--batch-size', type=int, default=1, help='batch size')
        parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
        parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
        parser.add_argument('--keras', action='store_true', help='TF: use Keras')
        parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
        parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
        parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
        parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
        parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
        parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
        parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
        parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
        parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
        parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
        parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
        parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
        parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
        parser.add_argument(
            '--include',
            nargs='+',
            default=['torchscript'],
            help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
        opt = parser.parse_known_args()[0] if known else parser.parse_args()
        print_args(vars(opt))
        return opt
    
    
    def main(opt):
        for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
            run(**vars(opt))
    
    
    if __name__ == '__main__':
        opt = parse_opt()
        main(opt)