board_detector.py 7.68 KiB
import cv2
import numpy as np
# global show_cv because I didn't want to have show_cv as an input to every function
show_cv = None
def init_show_cv(val):
global show_cv
show_cv = val
def find_longest_lines(img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# sobel gradients
sobel_x = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=3)
abs_sobel_x = np.absolute(sobel_x)
abs_sobel_y = np.absolute(sobel_y)
# threshold on abs values of sobel gradients and combine them
_, threshold_x = cv2.threshold(abs_sobel_x, 17, 255, cv2.THRESH_BINARY)
_, threshold_y = cv2.threshold(abs_sobel_y, 17, 255, cv2.THRESH_BINARY)
combined_threshold = cv2.bitwise_or(threshold_x, threshold_y)
combined_threshold = np.uint8(combined_threshold) # median blur needs this
combined_threshold = cv2.medianBlur(combined_threshold, 5) # this gets rid of outliers so weird diagonal lines don't get made
edges = combined_threshold
# edges = cv2.Canny(gray_img, 30, 150, apertureSize=3) # didn't work as well
if (show_cv):
cv2.imshow('Sobel Filter', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
lines = cv2.HoughLinesP(edges, 1, np.pi/180, 200, minLineLength=400, maxLineGap=15)
vertical_lines = []
horizontal_lines = []
# separate horizontal and vertical lines
if lines is not None:
for line in lines:
x1, y1, x2, y2 = line[0]
if abs(x2 - x1) < abs(y2 - y1): # vertical line
vertical_lines.append(line)
else:
horizontal_lines.append(line)
# filter lines too close to each other
filtered_vertical = filter_lines(vertical_lines, 50)
filtered_horizontal = filter_lines(horizontal_lines, 50)
# sorted_vertical = sorted(filtered_vertical, key=lambda line: min(line[0][1], line[0][3]))
# sorted_horizontal = sorted(filtered_horizontal, key=lambda line: min(line[0][0], line[0][2]))
return filtered_vertical, filtered_horizontal
def filter_lines(lines, min_distance):
filtered_lines = []
# filter out lines too close to each other
# (this assumes lines are around the same size and parallel)
# (extremely simplified to improve computational speed because this is all we need)
for line1 in lines:
x1, y1, x2, y2 = line1[0]
line1_x_avg = (x1 + x2) / 2
line1_y_avg = (y1 + y2) / 2
keep_line = True
for line2 in filtered_lines:
x3, y3, x4, y4 = line2[0]
line2_x_avg = (x3 + x4) / 2
line2_y_avg = (y3 + y4) / 2
# calculate dist between average points of the 2 lines
dist = np.sqrt((line1_x_avg - line2_x_avg)**2 + (line1_y_avg - line2_y_avg)**2)
if dist < min_distance:
keep_line = False
break
if keep_line:
filtered_lines.append(line1)
return filtered_lines
def detect_board(img):
vertical_lines, horizontal_lines = find_longest_lines(img)
print("# of Vertical:",len(vertical_lines))
print("# of Horizontal:",len(horizontal_lines))
height, width, _ = img.shape
black_img = np.zeros((height, width), dtype=np.uint8)
# create bitmasks for vert and horiz so we can get lines and intersections
height, width, _ = img.shape
vertical_mask = np.zeros((height, width), dtype=np.uint8)
horizontal_mask = np.zeros((height, width), dtype=np.uint8)
for line in vertical_lines:
x1, y1, x2, y2 = line[0]
cv2.line(vertical_mask, (x1, y1), (x2, y2), (255), 2)
for line in horizontal_lines:
x1, y1, x2, y2 = line[0]
cv2.line(horizontal_mask, (x1, y1), (x2, y2), (255), 2)
intersection = cv2.bitwise_and(vertical_mask, horizontal_mask)
board_lines = cv2.bitwise_or(vertical_mask, horizontal_mask)
contours, hierarchy = cv2.findContours(board_lines, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
intersection_points, hierarchy = cv2.findContours(intersection, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if (show_cv):
board_lines_img = img.copy()
cv2.drawContours(board_lines_img, contours, -1, (255, 255, 0), 2)
cv2.drawContours(board_lines_img, intersection_points, -1, (0, 0, 255), 2)
cv2.imshow('Lines of Board', board_lines_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# find largest contour and get rid of it because it contains weird edges from lines
max_area = 100000 # we're assuming board is going to be big (hopefully to speed up computation on raspberry pi)
largest = -1
# second_largest = -1
# max_rect = None
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
largest = i
# "largest" is index of largest contour
# get rid of contour containing the edges of the lines
contours = list(contours)
contours.pop(largest)
contours = tuple(contours)
# thicken lines so that connections are made
contour_mask = np.zeros((height, width), dtype=np.uint8)
cv2.drawContours(contour_mask, contours, -1, (255), thickness=10)
thick_contours, _ = cv2.findContours(contour_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# obtain largest contour of the thickened lines (the border) and approximate a 4 sided polygon onto it
max_area = 100000
largest = -1
max_rect = None
for i, contour in enumerate(thick_contours):
area = cv2.contourArea(contour)
if area > max_area:
epsilon = 0.05 * cv2.arcLength(contour, True)
rect = cv2.approxPolyDP(contour, epsilon, True) # uses Douglas-Peucker algorithm (probably overkill)
if (len(rect) == 4):
max_area = area
largest = i
max_rect = rect
# perspective transform based on rectangle outline of board
corners = max_rect.reshape(-1, 2) # turn rectangle into coordinate pairs
tl = corners[1] # FIND A BETTER WAY TO DO THIS - sorting wasn't working for some reason
tr = corners[0]
bl = corners[2]
br = corners[3]
src = np.float32([list(tl), list(tr), list(bl), list(br)])
dest = np.float32([[0,0], [width, 0], [0, height], [width, height]])
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_img = img.copy()
warped_img = cv2.warpPerspective(np.uint8(warped_img), M, (width, height))
M = cv2.getPerspectiveTransform(src, dest)
Minv = cv2.getPerspectiveTransform(dest, src)
warped_ip = img.copy()
warped_ip = cv2.drawContours(warped_ip, intersection_points, -1, (0, 0, 255), 2)
warped_ip = cv2.warpPerspective(np.uint8(warped_ip), M, (width, height))
if (show_cv):
contours_img = img.copy()
# for i in range(63):
# cv2.drawContours(contours_img, [sorted_contours[i]], -1, (255-4*i, 4*i, 0), 2)
cv2.drawContours(contours_img, thick_contours, -1, (0, 255, 0), 2)
cv2.drawContours(contours_img, [thick_contours[largest]], -1, (0, 0, 255), 2)
cv2.drawContours(contours_img, [max_rect], -1, (255, 0, 0), 2)
for corner in corners:
x,y = corner.ravel()
cv2.circle(contours_img, (x, y), 5, (0, 255, 255), -1)
# cv2.circle(contours_img, (int(min_x), int(min_y)), 5, (255, 0, 0), -1)
# cv2.circle(contours_img, (int(max_x), int(max_y)), 5, (255, 0, 0), -1)
cv2.imshow('Contours', contours_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow('Warped', warped_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# cv2.imshow('Warped', warped_ip)
# cv2.waitKey(0)
# cv2.destroyAllWindows()