Joseph K. Bradley
authored
## What changes were proposed in this pull request? General decisions to follow, except where noted: * spark.mllib, pyspark.mllib: Remove all Experimental annotations. Leave DeveloperApi annotations alone. * spark.ml, pyspark.ml ** Annotate Estimator-Model pairs of classes and companion objects the same way. ** For all algorithms marked Experimental with Since tag <= 1.6, remove Experimental annotation. ** For all algorithms marked Experimental with Since tag = 2.0, leave Experimental annotation. * DeveloperApi annotations are left alone, except where noted. * No changes to which types are sealed. Exceptions where I am leaving items Experimental in spark.ml, pyspark.ml, mainly because the items are new: * Model Summary classes * MLWriter, MLReader, MLWritable, MLReadable * Evaluator and subclasses: There is discussion of changes around evaluating multiple metrics at once for efficiency. * RFormula: Its behavior may need to change slightly to match R in edge cases. * AFTSurvivalRegression * MultilayerPerceptronClassifier DeveloperApi changes: * ml.tree.Node, ml.tree.Split, and subclasses should no longer be DeveloperApi ## How was this patch tested? N/A Note to reviewers: * spark.ml.clustering.LDA underwent significant changes (additional methods), so let me know if you want me to leave it Experimental. * Be careful to check for cases where a class should no longer be Experimental but has an Experimental method, val, or other feature. I did not find such cases, but please verify. Author: Joseph K. Bradley <joseph@databricks.com> Closes #14147 from jkbradley/experimental-audit.
Name | Last commit | Last update |
---|---|---|
.. | ||
docs | ||
lib | ||
pyspark | ||
test_support | ||
.gitignore | ||
pylintrc | ||
run-tests | ||
run-tests.py |