Skip to content
Snippets Groups Projects
user avatar
Patrick Wendell authored
The Spark codebase is a bit fast-and-loose when accessing classloaders and this has caused a few bugs to surface in master.

This patch defines some utility methods for accessing classloaders. This makes the intention when accessing a classloader much more explicit in the code and fixes a few cases where the wrong one was chosen.

case (a) -> We want the classloader that loaded Spark
case (b) -> We want the context class loader, or if not present, we want (a)

This patch provides a better fix for SPARK-1403 (https://issues.apache.org/jira/browse/SPARK-1403) than the current work around, which it reverts. It also fixes a previously unreported bug that the `./spark-submit` script did not work for running with `local` master. It didn't work because the executor classloader did not properly delegate to the context class loader (if it is defined) and in local mode the context class loader is set by the `./spark-submit` script. A unit test is added for that case.

Author: Patrick Wendell <pwendell@gmail.com>

Closes #398 from pwendell/class-loaders and squashes the following commits:

b4a1a58 [Patrick Wendell] Minor clean up
14f1272 [Patrick Wendell] SPARK-1480: Clean up use of classloaders
4bc07eeb
History
Name Last commit Last update
..
catalyst
core
hive
README.md

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into three subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst’s logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.

Other dependencies for developers

In order to create new hive test cases , you will need to set several environmental variables.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

Using the console

An interactive scala console can be invoked by running sbt/sbt hive/console. From here you can execute queries and inspect the various stages of query optimization.

catalyst$ sbt/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.types._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.TestHive._
Welcome to Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45).
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.ExecutedQuery =
SELECT * FROM (SELECT * FROM src) a
=== Query Plan ===
Project [key#6:0.0,value#7:0.1]
 HiveTableScan [key#6,value#7], (MetastoreRelation default, src, None), None

Query results are RDDs and can be operated as such.

scala> query.collect()
res8: Array[org.apache.spark.sql.execution.Row] = Array([238,val_238], [86,val_86], [311,val_311]...

You can also build further queries on top of these RDDs using the query DSL.

scala> query.where('key === 100).toRdd.collect()
res11: Array[org.apache.spark.sql.execution.Row] = Array([100,val_100], [100,val_100])

From the console you can even write rules that transform query plans. For example, the above query has redundant project operators that aren't doing anything. This redundancy can be eliminated using the transform function that is available on all TreeNode objects.

scala> query.logicalPlan
res1: catalyst.plans.logical.LogicalPlan = 
Project {key#0,value#1}
 Project {key#0,value#1}
  MetastoreRelation default, src, None


scala> query.logicalPlan transform {
     |   case Project(projectList, child) if projectList == child.output => child
     | }
res2: catalyst.plans.logical.LogicalPlan = 
Project {key#0,value#1}
 MetastoreRelation default, src, None