Skip to content
Snippets Groups Projects
Commit ff318c0d authored by Joseph K. Bradley's avatar Joseph K. Bradley
Browse files

[SPARK-21050][ML] Word2vec persistence overflow bug fix

## What changes were proposed in this pull request?

The method calculateNumberOfPartitions() uses Int, not Long (unlike the MLlib version), so it is very easily to have an overflow in calculating the number of partitions for ML persistence.

This modifies the calculations to use Long.

## How was this patch tested?

New unit test.  I verified that the test fails before this patch.

Author: Joseph K. Bradley <joseph@databricks.com>

Closes #18265 from jkbradley/word2vec-save-fix.
parent b1436c74
No related branches found
No related tags found
No related merge requests found
......@@ -19,6 +19,7 @@ package org.apache.spark.ml.feature
import org.apache.hadoop.fs.Path
import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.{BLAS, Vector, Vectors, VectorUDT}
......@@ -339,25 +340,42 @@ object Word2VecModel extends MLReadable[Word2VecModel] {
val wordVectors = instance.wordVectors.getVectors
val dataSeq = wordVectors.toSeq.map { case (word, vector) => Data(word, vector) }
val dataPath = new Path(path, "data").toString
val bufferSizeInBytes = Utils.byteStringAsBytes(
sc.conf.get("spark.kryoserializer.buffer.max", "64m"))
val numPartitions = Word2VecModelWriter.calculateNumberOfPartitions(
bufferSizeInBytes, instance.wordVectors.wordIndex.size, instance.getVectorSize)
sparkSession.createDataFrame(dataSeq)
.repartition(calculateNumberOfPartitions)
.repartition(numPartitions)
.write
.parquet(dataPath)
}
}
def calculateNumberOfPartitions(): Int = {
val floatSize = 4
private[feature]
object Word2VecModelWriter {
/**
* Calculate the number of partitions to use in saving the model.
* [SPARK-11994] - We want to partition the model in partitions smaller than
* spark.kryoserializer.buffer.max
* @param bufferSizeInBytes Set to spark.kryoserializer.buffer.max
* @param numWords Vocab size
* @param vectorSize Vector length for each word
*/
def calculateNumberOfPartitions(
bufferSizeInBytes: Long,
numWords: Int,
vectorSize: Int): Int = {
val floatSize = 4L // Use Long to help avoid overflow
val averageWordSize = 15
// [SPARK-11994] - We want to partition the model in partitions smaller than
// spark.kryoserializer.buffer.max
val bufferSizeInBytes = Utils.byteStringAsBytes(
sc.conf.get("spark.kryoserializer.buffer.max", "64m"))
// Calculate the approximate size of the model.
// Assuming an average word size of 15 bytes, the formula is:
// (floatSize * vectorSize + 15) * numWords
val numWords = instance.wordVectors.wordIndex.size
val approximateSizeInBytes = (floatSize * instance.getVectorSize + averageWordSize) * numWords
((approximateSizeInBytes / bufferSizeInBytes) + 1).toInt
val approximateSizeInBytes = (floatSize * vectorSize + averageWordSize) * numWords
val numPartitions = (approximateSizeInBytes / bufferSizeInBytes) + 1
require(numPartitions < 10e8, s"Word2VecModel calculated that it needs $numPartitions " +
s"partitions to save this model, which is too large. Try increasing " +
s"spark.kryoserializer.buffer.max so that Word2VecModel can use fewer partitions.")
numPartitions.toInt
}
}
......
......@@ -25,6 +25,7 @@ import org.apache.spark.ml.util.TestingUtils._
import org.apache.spark.mllib.feature.{Word2VecModel => OldWord2VecModel}
import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.sql.Row
import org.apache.spark.util.Utils
class Word2VecSuite extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
......@@ -188,6 +189,15 @@ class Word2VecSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
assert(math.abs(similarity(5) - similarityLarger(5) / similarity(5)) > 1E-5)
}
test("Word2Vec read/write numPartitions calculation") {
val smallModelNumPartitions = Word2VecModel.Word2VecModelWriter.calculateNumberOfPartitions(
Utils.byteStringAsBytes("64m"), numWords = 10, vectorSize = 5)
assert(smallModelNumPartitions === 1)
val largeModelNumPartitions = Word2VecModel.Word2VecModelWriter.calculateNumberOfPartitions(
Utils.byteStringAsBytes("64m"), numWords = 1000000, vectorSize = 5000)
assert(largeModelNumPartitions > 1)
}
test("Word2Vec read/write") {
val t = new Word2Vec()
.setInputCol("myInputCol")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment