@@ -83,7 +83,7 @@ DStreams support many of the transformations available on normal Spark RDD's:
<tr>
<td><b>groupByKey</b>([<i>numTasks</i>]) </td>
<td> When called on a DStream of (K, V) pairs, returns a new DStream of (K, Seq[V]) pairs by grouping together all the values of each key in the RDDs of the source DStream. <br/>
<b>Note:</b> By default, this uses Spark's default number of parallel tasks (2 for local machine, 8 for a cluser) to do the grouping. You can pass an optional <code>numTasks</code> argument to set a different number of tasks.
<b>Note:</b> By default, this uses Spark's default number of parallel tasks (2 for local machine, 8 for a cluster) to do the grouping. You can pass an optional <code>numTasks</code> argument to set a different number of tasks.
</td>
</tr>
<tr>
...
...
@@ -132,7 +132,7 @@ Spark Streaming features windowed computations, which allow you to apply transfo
<td> When called on a DStream of (K, V) pairs, returns a new DStream of (K, Seq[V]) pairs by grouping together values of each key over batches in a sliding window. <br/>
<b>Note:</b> By default, this uses Spark's default number of parallel tasks (2 for local machine, 8 for a cluser) to do the grouping. You can pass an optional <code>numTasks</code> argument to set a different number of tasks.</td>
<b>Note:</b> By default, this uses Spark's default number of parallel tasks (2 for local machine, 8 for a cluster) to do the grouping. You can pass an optional <code>numTasks</code> argument to set a different number of tasks.</td>