Skip to content
Snippets Groups Projects
Commit 67de051b authored by Xinghao's avatar Xinghao
Browse files

SVMSuite and LassoSuite rewritten to follow closely with LogisticRegressionSuite

parent 29e04294
No related branches found
No related tags found
No related merge requests found
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package spark.mllib.classification
import scala.util.Random
......@@ -7,7 +24,6 @@ import org.scalatest.BeforeAndAfterAll
import org.scalatest.FunSuite
import spark.SparkContext
import spark.SparkContext._
import java.io._
......@@ -19,43 +35,82 @@ class SVMSuite extends FunSuite with BeforeAndAfterAll {
System.clearProperty("spark.driver.port")
}
// Generate noisy input of the form Y = signum(x.dot(weights) + intercept + noise)
def generateSVMInput(
intercept: Double,
weights: Array[Double],
nPoints: Int,
seed: Int): Seq[(Double, Array[Double])] = {
val rnd = new Random(seed)
val x = Array.fill[Array[Double]](nPoints)(Array.fill[Double](weights.length)(rnd.nextGaussian()))
val y = x.map(xi =>
signum((xi zip weights).map(xw => xw._1*xw._2).reduce(_+_) + intercept + 0.1 * rnd.nextGaussian())
)
y zip x
}
def validatePrediction(predictions: Seq[Double], input: Seq[(Double, Array[Double])]) {
val numOffPredictions = predictions.zip(input).filter { case (prediction, (expected, _)) =>
// A prediction is off if the prediction is more than 0.5 away from expected value.
math.abs(prediction - expected) > 0.5
}.size
// At least 80% of the predictions should be on.
assert(numOffPredictions < input.length / 5)
}
test("SVMLocalRandomSGD") {
val nPoints = 10000
val rnd = new Random(42)
val x1 = Array.fill[Double](nPoints)(rnd.nextGaussian())
val x2 = Array.fill[Double](nPoints)(rnd.nextGaussian())
val A = 2.0
val B = -1.5
val C = 1.0
val testData = generateSVMInput(A, Array[Double](B,C), nPoints, 42)
val testRDD = sc.parallelize(testData, 2)
testRDD.cache()
val svm = new SVMLocalRandomSGD().setStepSize(1.0).setRegParam(1.0).setNumIterations(100)
val model = svm.train(testRDD)
val validationData = generateSVMInput(A, Array[Double](B,C), nPoints, 17)
val validationRDD = sc.parallelize(validationData,2)
// Test prediction on RDD.
validatePrediction(model.predict(validationRDD.map(_._2)).collect(), validationData)
// Test prediction on Array.
validatePrediction(validationData.map(row => model.predict(row._2)), validationData)
}
test("SVMLocalRandomSGD with initial weights") {
val nPoints = 10000
val A = 2.0
val B = -1.5
val C = 1.0
val y = (0 until nPoints).map { i =>
signum(A + B * x1(i) + C * x2(i) + 0.0*rnd.nextGaussian())
}
val testData = generateSVMInput(A, Array[Double](B,C), nPoints, 42)
val testData = (0 until nPoints).map(i => (y(i).toDouble, Array(x1(i),x2(i)))).toArray
val initialB = -1.0
val initialC = -1.0
val initialWeights = Array(initialB,initialC)
val testRDD = sc.parallelize(testData, 2)
testRDD.cache()
val writer_data = new PrintWriter(new File("svmtest.dat"))
testData.foreach(yx => {
writer_data.write(yx._1 + "")
yx._2.foreach(xi => writer_data.write("\t" + xi))
writer_data.write("\n")})
writer_data.close()
val svm = new SVMLocalRandomSGD().setStepSize(1.0).setRegParam(1.0).setNumIterations(100)
val svm = new SVMLocalRandomSGD().setStepSize(1.0)
.setRegParam(1.0)
.setNumIterations(100)
val model = svm.train(testRDD)
val model = svm.train(testRDD, initialWeights)
val yPredict = (0 until nPoints).map(i => model.predict(Array(x1(i),x2(i))))
val validationData = generateSVMInput(A, Array[Double](B,C), nPoints, 17)
val validationRDD = sc.parallelize(validationData,2)
val accuracy = ((y zip yPredict).map(yy => if (yy._1==yy._2) 1 else 0).reduceLeft(_+_).toDouble / nPoints.toDouble)
// Test prediction on RDD.
validatePrediction(model.predict(validationRDD.map(_._2)).collect(), validationData)
assert(accuracy >= 0.90, "Accuracy (" + accuracy + ") too low")
// Test prediction on Array.
validatePrediction(validationData.map(row => model.predict(row._2)), validationData)
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package spark.mllib.regression
import scala.util.Random
......@@ -6,7 +23,6 @@ import org.scalatest.BeforeAndAfterAll
import org.scalatest.FunSuite
import spark.SparkContext
import spark.SparkContext._
class LassoSuite extends FunSuite with BeforeAndAfterAll {
......@@ -17,35 +33,90 @@ class LassoSuite extends FunSuite with BeforeAndAfterAll {
System.clearProperty("spark.driver.port")
}
// Generate noisy input of the form Y = x.dot(weights) + intercept + noise
def generateLassoInput(
intercept: Double,
weights: Array[Double],
nPoints: Int,
seed: Int): Seq[(Double, Array[Double])] = {
val rnd = new Random(seed)
val x = Array.fill[Array[Double]](nPoints)(Array.fill[Double](weights.length)(rnd.nextGaussian()))
val y = x.map(xi => (xi zip weights).map(xw => xw._1*xw._2).reduce(_+_) + intercept + 0.1 * rnd.nextGaussian())
y zip x
}
def validatePrediction(predictions: Seq[Double], input: Seq[(Double, Array[Double])]) {
val numOffPredictions = predictions.zip(input).filter { case (prediction, (expected, _)) =>
// A prediction is off if the prediction is more than 0.5 away from expected value.
math.abs(prediction - expected) > 0.5
}.size
// At least 80% of the predictions should be on.
assert(numOffPredictions < input.length / 5)
}
test("LassoLocalRandomSGD") {
val nPoints = 10000
val rnd = new Random(42)
val x1 = Array.fill[Double](nPoints)(rnd.nextGaussian())
val x2 = Array.fill[Double](nPoints)(rnd.nextGaussian())
val A = 2.0
val B = -1.5
val C = 1.0e-2
val y = (0 until nPoints).map { i =>
A + B * x1(i) + C * x2(i) + 0.1*rnd.nextGaussian()
}
val testData = (0 until nPoints).map(i => (y(i).toDouble, Array(x1(i),x2(i)))).toArray
val testData = generateLassoInput(A, Array[Double](B,C), nPoints, 42)
val testRDD = sc.parallelize(testData, 2)
testRDD.cache()
val ls = new LassoLocalRandomSGD().setStepSize(1.0)
.setRegParam(0.01)
.setNumIterations(20)
val ls = new LassoLocalRandomSGD().setStepSize(1.0).setRegParam(0.01).setNumIterations(20)
val model = ls.train(testRDD)
val weight0 = model.weights(0)
val weight1 = model.weights(1)
assert(model.intercept >= 1.9 && model.intercept <= 2.1, model.intercept + " not in [1.9, 2.1]")
assert(weight0 >= -1.60 && weight0 <= -1.40, weight0 + " not in [-1.6, -1.4]")
assert(weight1 >= -1.0e-3 && weight1 <= 1.0e-3, weight1 + " not in [-0.001, 0.001]")
val validationData = generateLassoInput(A, Array[Double](B,C), nPoints, 17)
val validationRDD = sc.parallelize(validationData,2)
// Test prediction on RDD.
validatePrediction(model.predict(validationRDD.map(_._2)).collect(), validationData)
// Test prediction on Array.
validatePrediction(validationData.map(row => model.predict(row._2)), validationData)
}
test("LassoLocalRandomSGD with initial weights") {
val nPoints = 10000
val A = 2.0
val B = -1.5
val C = 1.0e-2
val testData = generateLassoInput(A, Array[Double](B,C), nPoints, 42)
val initialB = -1.0
val initialC = -1.0
val initialWeights = Array(initialB,initialC)
val testRDD = sc.parallelize(testData, 2)
testRDD.cache()
val ls = new LassoLocalRandomSGD().setStepSize(1.0).setRegParam(0.01).setNumIterations(20)
val model = ls.train(testRDD, initialWeights)
val weight0 = model.weights(0)
val weight1 = model.weights(1)
assert(model.intercept >= 1.9 && model.intercept <= 2.1, model.intercept + " not in [1.9, 2.1]")
assert(weight0 >= -1.60 && weight0 <= -1.40, weight0 + " not in [-1.6, -1.4]")
assert(weight1 >= -1.0e-3 && weight1 <= 1.0e-3, weight1 + " not in [-0.001, 0.001]")
val validationData = generateLassoInput(A, Array[Double](B,C), nPoints, 17)
val validationRDD = sc.parallelize(validationData,2)
// Test prediction on RDD.
validatePrediction(model.predict(validationRDD.map(_._2)).collect(), validationData)
// Test prediction on Array.
validatePrediction(validationData.map(row => model.predict(row._2)), validationData)
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment