Skip to content
Snippets Groups Projects
Commit 5fde4566 authored by Tathagata Das's avatar Tathagata Das
Browse files

Added Apache boilerplate and class docs to PartitionerAwareUnionRDD.

parent 577c8cc8
No related branches found
No related tags found
No related merge requests found
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.rdd package org.apache.spark.rdd
import org.apache.spark.{TaskContext, OneToOneDependency, SparkContext, Partition}
import scala.reflect.ClassTag import scala.reflect.ClassTag
import java.io.{ObjectOutputStream, IOException} import java.io.{ObjectOutputStream, IOException}
import org.apache.spark.{TaskContext, OneToOneDependency, SparkContext, Partition}
/**
* Class representing partitions of PartitionerAwareUnionRDD, which maintains the list of corresponding partitions
* of parent RDDs.
*/
private[spark] private[spark]
class PartitionerAwareUnionRDDPartition( class PartitionerAwareUnionRDDPartition(
@transient val rdds: Seq[RDD[_]], @transient val rdds: Seq[RDD[_]],
...@@ -22,6 +44,14 @@ class PartitionerAwareUnionRDDPartition( ...@@ -22,6 +44,14 @@ class PartitionerAwareUnionRDDPartition(
} }
} }
/**
* Class representing an RDD that can take multiple RDDs partitioned by the same partitioner and
* unify them into a single RDD while preserving the partitioner. So m RDDs with p partitions each
* will be unified to a single RDD with p partitions and the same partitioner. The preferred
* location for each partition of the unified RDD will be the most common preferred location
* of the corresponding partitions of the parent RDDs. For example, location of partition 0
* of the unified RDD will be where most of partition 0 of the parent RDDs are located.
*/
private[spark] private[spark]
class PartitionerAwareUnionRDD[T: ClassTag]( class PartitionerAwareUnionRDD[T: ClassTag](
sc: SparkContext, sc: SparkContext,
...@@ -54,7 +84,7 @@ class PartitionerAwareUnionRDD[T: ClassTag]( ...@@ -54,7 +84,7 @@ class PartitionerAwareUnionRDD[T: ClassTag](
val location = if (locations.isEmpty) { val location = if (locations.isEmpty) {
None None
} else { } else {
// Find the location where maximum number of parent partitions prefer // Find the location that maximum number of parent partitions prefer
Some(locations.groupBy(x => x).maxBy(_._2.length)._1) Some(locations.groupBy(x => x).maxBy(_._2.length)._1)
} }
logDebug("Selected location for " + this + ", partition " + s.index + " = " + location) logDebug("Selected location for " + this + ", partition " + s.index + " = " + location)
...@@ -73,7 +103,7 @@ class PartitionerAwareUnionRDD[T: ClassTag]( ...@@ -73,7 +103,7 @@ class PartitionerAwareUnionRDD[T: ClassTag](
rdds = null rdds = null
} }
// gets the *current* preferred locations from the DAGScheduler (as opposed to the static ones) // Get the *current* preferred locations from the DAGScheduler (as opposed to the static ones)
private def currPrefLocs(rdd: RDD[_], part: Partition): Seq[String] = { private def currPrefLocs(rdd: RDD[_], part: Partition): Seq[String] = {
rdd.context.getPreferredLocs(rdd, part.index).map(tl => tl.host) rdd.context.getPreferredLocs(rdd, part.index).map(tl => tl.host)
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment