Skip to content
Snippets Groups Projects
Commit 161ab939 authored by Raymond Liu's avatar Raymond Liu
Browse files

Yarn workerRunnable refactor

parent 79a5ba34
No related branches found
No related tags found
No related merge requests found
......@@ -25,12 +25,10 @@ import scala.collection.JavaConversions._
import scala.collection.mutable.HashMap
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.DataOutputBuffer
import org.apache.hadoop.net.NetUtils
import org.apache.hadoop.security.UserGroupInformation
import org.apache.hadoop.yarn.api._
import org.apache.hadoop.yarn.api.ApplicationConstants.Environment
import org.apache.hadoop.yarn.api.records._
import org.apache.hadoop.yarn.api.protocolrecords._
import org.apache.hadoop.yarn.conf.YarnConfiguration
......@@ -43,16 +41,17 @@ import org.apache.spark.{SparkConf, Logging}
class WorkerRunnable(
container: Container,
conf: Configuration,
sparkConf: SparkConf,
spConf: SparkConf,
masterAddress: String,
slaveId: String,
hostname: String,
workerMemory: Int,
workerCores: Int)
extends Runnable with Logging {
extends Runnable with WorkerRunnableUtil with Logging {
var rpc: YarnRPC = YarnRPC.create(conf)
var cm: ContainerManager = _
val sparkConf = spConf
val yarnConf: YarnConfiguration = new YarnConfiguration(conf)
def run = {
......@@ -75,43 +74,6 @@ class WorkerRunnable(
val env = prepareEnvironment
ctx.setEnvironment(env)
// Extra options for the JVM
var JAVA_OPTS = ""
// Set the JVM memory
val workerMemoryString = workerMemory + "m"
JAVA_OPTS += "-Xms" + workerMemoryString + " -Xmx" + workerMemoryString + " "
if (env.isDefinedAt("SPARK_JAVA_OPTS")) {
JAVA_OPTS += env("SPARK_JAVA_OPTS") + " "
}
JAVA_OPTS += " -Djava.io.tmpdir=" +
new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + " "
// Commenting it out for now - so that people can refer to the properties if required. Remove
// it once cpuset version is pushed out.
// The context is, default gc for server class machines end up using all cores to do gc - hence
// if there are multiple containers in same node, spark gc effects all other containers
// performance (which can also be other spark containers)
// Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in
// multi-tenant environments. Not sure how default java gc behaves if it is limited to subset
// of cores on a node.
/*
else {
// If no java_opts specified, default to using -XX:+CMSIncrementalMode
// It might be possible that other modes/config is being done in SPARK_JAVA_OPTS, so we dont
// want to mess with it.
// In our expts, using (default) throughput collector has severe perf ramnifications in
// multi-tennent machines
// The options are based on
// http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html#0.0.0.%20When%20to%20Use%20the%20Concurrent%20Low%20Pause%20Collector|outline
JAVA_OPTS += " -XX:+UseConcMarkSweepGC "
JAVA_OPTS += " -XX:+CMSIncrementalMode "
JAVA_OPTS += " -XX:+CMSIncrementalPacing "
JAVA_OPTS += " -XX:CMSIncrementalDutyCycleMin=0 "
JAVA_OPTS += " -XX:CMSIncrementalDutyCycle=10 "
}
*/
ctx.setUser(UserGroupInformation.getCurrentUser().getShortUserName())
val credentials = UserGroupInformation.getCurrentUser().getCredentials()
......@@ -119,28 +81,7 @@ class WorkerRunnable(
credentials.writeTokenStorageToStream(dob)
ctx.setContainerTokens(ByteBuffer.wrap(dob.getData()))
var javaCommand = "java"
val javaHome = System.getenv("JAVA_HOME")
if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) {
javaCommand = Environment.JAVA_HOME.$() + "/bin/java"
}
val commands = List[String](javaCommand +
" -server " +
// Kill if OOM is raised - leverage yarn's failure handling to cause rescheduling.
// Not killing the task leaves various aspects of the worker and (to some extent) the jvm in
// an inconsistent state.
// TODO: If the OOM is not recoverable by rescheduling it on different node, then do
// 'something' to fail job ... akin to blacklisting trackers in mapred ?
" -XX:OnOutOfMemoryError='kill %p' " +
JAVA_OPTS +
" org.apache.spark.executor.CoarseGrainedExecutorBackend " +
masterAddress + " " +
slaveId + " " +
hostname + " " +
workerCores +
" 1> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" +
" 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr")
val commands = prepareCommand(masterAddress, slaveId, hostname, workerMemory, workerCores)
logInfo("Setting up worker with commands: " + commands)
ctx.setCommands(commands)
......@@ -151,65 +92,6 @@ class WorkerRunnable(
cm.startContainer(startReq)
}
private def setupDistributedCache(
file: String,
rtype: LocalResourceType,
localResources: HashMap[String, LocalResource],
timestamp: String,
size: String,
vis: String) = {
val uri = new URI(file)
val amJarRsrc = Records.newRecord(classOf[LocalResource]).asInstanceOf[LocalResource]
amJarRsrc.setType(rtype)
amJarRsrc.setVisibility(LocalResourceVisibility.valueOf(vis))
amJarRsrc.setResource(ConverterUtils.getYarnUrlFromURI(uri))
amJarRsrc.setTimestamp(timestamp.toLong)
amJarRsrc.setSize(size.toLong)
localResources(uri.getFragment()) = amJarRsrc
}
def prepareLocalResources: HashMap[String, LocalResource] = {
logInfo("Preparing Local resources")
val localResources = HashMap[String, LocalResource]()
if (System.getenv("SPARK_YARN_CACHE_FILES") != null) {
val timeStamps = System.getenv("SPARK_YARN_CACHE_FILES_TIME_STAMPS").split(',')
val fileSizes = System.getenv("SPARK_YARN_CACHE_FILES_FILE_SIZES").split(',')
val distFiles = System.getenv("SPARK_YARN_CACHE_FILES").split(',')
val visibilities = System.getenv("SPARK_YARN_CACHE_FILES_VISIBILITIES").split(',')
for( i <- 0 to distFiles.length - 1) {
setupDistributedCache(distFiles(i), LocalResourceType.FILE, localResources, timeStamps(i),
fileSizes(i), visibilities(i))
}
}
if (System.getenv("SPARK_YARN_CACHE_ARCHIVES") != null) {
val timeStamps = System.getenv("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS").split(',')
val fileSizes = System.getenv("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES").split(',')
val distArchives = System.getenv("SPARK_YARN_CACHE_ARCHIVES").split(',')
val visibilities = System.getenv("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES").split(',')
for( i <- 0 to distArchives.length - 1) {
setupDistributedCache(distArchives(i), LocalResourceType.ARCHIVE, localResources,
timeStamps(i), fileSizes(i), visibilities(i))
}
}
logInfo("Prepared Local resources " + localResources)
localResources
}
def prepareEnvironment: HashMap[String, String] = {
val env = new HashMap[String, String]()
ClientBase.populateClasspath(yarnConf, sparkConf, System.getenv("SPARK_YARN_LOG4J_PATH") != null, env)
// Allow users to specify some environment variables
Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV"))
System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v }
env
}
def connectToCM: ContainerManager = {
val cmHostPortStr = container.getNodeId().getHost() + ":" + container.getNodeId().getPort()
val cmAddress = NetUtils.createSocketAddr(cmHostPortStr)
......
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.deploy.yarn
import java.net.URI
import java.nio.ByteBuffer
import java.security.PrivilegedExceptionAction
import scala.collection.JavaConversions._
import scala.collection.mutable.HashMap
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.DataOutputBuffer
import org.apache.hadoop.net.NetUtils
import org.apache.hadoop.security.UserGroupInformation
import org.apache.hadoop.yarn.api._
import org.apache.hadoop.yarn.api.ApplicationConstants.Environment
import org.apache.hadoop.yarn.api.records._
import org.apache.hadoop.yarn.api.protocolrecords._
import org.apache.hadoop.yarn.util.{Apps, ConverterUtils, Records}
import org.apache.spark.{SparkConf, Logging}
import org.apache.hadoop.yarn.conf.YarnConfiguration
trait WorkerRunnableUtil extends Logging {
val yarnConf: YarnConfiguration
val sparkConf: SparkConf
lazy val env = prepareEnvironment
def prepareCommand(masterAddress: String,
slaveId: String,
hostname: String,
workerMemory: Int,
workerCores: Int) = {
// Extra options for the JVM
var JAVA_OPTS = ""
// Set the JVM memory
val workerMemoryString = workerMemory + "m"
JAVA_OPTS += "-Xms" + workerMemoryString + " -Xmx" + workerMemoryString + " "
if (env.isDefinedAt("SPARK_JAVA_OPTS")) {
JAVA_OPTS += env("SPARK_JAVA_OPTS") + " "
}
JAVA_OPTS += " -Djava.io.tmpdir=" +
new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + " "
// Commenting it out for now - so that people can refer to the properties if required. Remove
// it once cpuset version is pushed out.
// The context is, default gc for server class machines end up using all cores to do gc - hence
// if there are multiple containers in same node, spark gc effects all other containers
// performance (which can also be other spark containers)
// Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in
// multi-tenant environments. Not sure how default java gc behaves if it is limited to subset
// of cores on a node.
/*
else {
// If no java_opts specified, default to using -XX:+CMSIncrementalMode
// It might be possible that other modes/config is being done in SPARK_JAVA_OPTS, so we dont
// want to mess with it.
// In our expts, using (default) throughput collector has severe perf ramnifications in
// multi-tennent machines
// The options are based on
// http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html#0.0.0.%20When%20to%20Use%20the%20Concurrent%20Low%20Pause%20Collector|outline
JAVA_OPTS += " -XX:+UseConcMarkSweepGC "
JAVA_OPTS += " -XX:+CMSIncrementalMode "
JAVA_OPTS += " -XX:+CMSIncrementalPacing "
JAVA_OPTS += " -XX:CMSIncrementalDutyCycleMin=0 "
JAVA_OPTS += " -XX:CMSIncrementalDutyCycle=10 "
}
*/
var javaCommand = "java"
val javaHome = System.getenv("JAVA_HOME")
if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) {
javaCommand = Environment.JAVA_HOME.$() + "/bin/java"
}
val commands = List[String](javaCommand +
" -server " +
// Kill if OOM is raised - leverage yarn's failure handling to cause rescheduling.
// Not killing the task leaves various aspects of the worker and (to some extent) the jvm in
// an inconsistent state.
// TODO: If the OOM is not recoverable by rescheduling it on different node, then do
// 'something' to fail job ... akin to blacklisting trackers in mapred ?
" -XX:OnOutOfMemoryError='kill %p' " +
JAVA_OPTS +
" org.apache.spark.executor.CoarseGrainedExecutorBackend " +
masterAddress + " " +
slaveId + " " +
hostname + " " +
workerCores +
" 1> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" +
" 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr")
commands
}
private def setupDistributedCache(
file: String,
rtype: LocalResourceType,
localResources: HashMap[String, LocalResource],
timestamp: String,
size: String,
vis: String) = {
val uri = new URI(file)
val amJarRsrc = Records.newRecord(classOf[LocalResource]).asInstanceOf[LocalResource]
amJarRsrc.setType(rtype)
amJarRsrc.setVisibility(LocalResourceVisibility.valueOf(vis))
amJarRsrc.setResource(ConverterUtils.getYarnUrlFromURI(uri))
amJarRsrc.setTimestamp(timestamp.toLong)
amJarRsrc.setSize(size.toLong)
localResources(uri.getFragment()) = amJarRsrc
}
def prepareLocalResources: HashMap[String, LocalResource] = {
logInfo("Preparing Local resources")
val localResources = HashMap[String, LocalResource]()
if (System.getenv("SPARK_YARN_CACHE_FILES") != null) {
val timeStamps = System.getenv("SPARK_YARN_CACHE_FILES_TIME_STAMPS").split(',')
val fileSizes = System.getenv("SPARK_YARN_CACHE_FILES_FILE_SIZES").split(',')
val distFiles = System.getenv("SPARK_YARN_CACHE_FILES").split(',')
val visibilities = System.getenv("SPARK_YARN_CACHE_FILES_VISIBILITIES").split(',')
for( i <- 0 to distFiles.length - 1) {
setupDistributedCache(distFiles(i), LocalResourceType.FILE, localResources, timeStamps(i),
fileSizes(i), visibilities(i))
}
}
if (System.getenv("SPARK_YARN_CACHE_ARCHIVES") != null) {
val timeStamps = System.getenv("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS").split(',')
val fileSizes = System.getenv("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES").split(',')
val distArchives = System.getenv("SPARK_YARN_CACHE_ARCHIVES").split(',')
val visibilities = System.getenv("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES").split(',')
for( i <- 0 to distArchives.length - 1) {
setupDistributedCache(distArchives(i), LocalResourceType.ARCHIVE, localResources,
timeStamps(i), fileSizes(i), visibilities(i))
}
}
logInfo("Prepared Local resources " + localResources)
localResources
}
def prepareEnvironment: HashMap[String, String] = {
val env = new HashMap[String, String]()
ClientBase.populateClasspath(yarnConf, sparkConf, System.getenv("SPARK_YARN_LOG4J_PATH") != null, env)
// Allow users to specify some environment variables
Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV"))
System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v }
env
}
}
......@@ -17,20 +17,16 @@
package org.apache.spark.deploy.yarn
import java.net.URI
import java.nio.ByteBuffer
import java.security.PrivilegedExceptionAction
import scala.collection.JavaConversions._
import scala.collection.mutable.HashMap
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.DataOutputBuffer
import org.apache.hadoop.net.NetUtils
import org.apache.hadoop.security.UserGroupInformation
import org.apache.hadoop.yarn.api._
import org.apache.hadoop.yarn.api.ApplicationConstants.Environment
import org.apache.hadoop.yarn.api.records._
import org.apache.hadoop.yarn.api.records.impl.pb.ProtoUtils
import org.apache.hadoop.yarn.api.protocolrecords._
......@@ -45,16 +41,17 @@ import org.apache.spark.{SparkConf, Logging}
class WorkerRunnable(
container: Container,
conf: Configuration,
sparkConf: SparkConf,
spConf: SparkConf,
masterAddress: String,
slaveId: String,
hostname: String,
workerMemory: Int,
workerCores: Int)
extends Runnable with Logging {
extends Runnable with WorkerRunnableUtil with Logging {
var rpc: YarnRPC = YarnRPC.create(conf)
var nmClient: NMClient = _
val sparkConf = spConf
val yarnConf: YarnConfiguration = new YarnConfiguration(conf)
def run = {
......@@ -74,73 +71,15 @@ class WorkerRunnable(
val localResources = prepareLocalResources
ctx.setLocalResources(localResources)
val env = prepareEnvironment
ctx.setEnvironment(env)
// Extra options for the JVM
var JAVA_OPTS = ""
// Set the JVM memory
val workerMemoryString = workerMemory + "m"
JAVA_OPTS += "-Xms" + workerMemoryString + " -Xmx" + workerMemoryString + " "
if (env.isDefinedAt("SPARK_JAVA_OPTS")) {
JAVA_OPTS += env("SPARK_JAVA_OPTS") + " "
}
JAVA_OPTS += " -Djava.io.tmpdir=" +
new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + " "
// Commenting it out for now - so that people can refer to the properties if required. Remove
// it once cpuset version is pushed out.
// The context is, default gc for server class machines end up using all cores to do gc - hence
// if there are multiple containers in same node, spark gc effects all other containers
// performance (which can also be other spark containers)
// Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in
// multi-tenant environments. Not sure how default java gc behaves if it is limited to subset
// of cores on a node.
/*
else {
// If no java_opts specified, default to using -XX:+CMSIncrementalMode
// It might be possible that other modes/config is being done in SPARK_JAVA_OPTS, so we dont
// want to mess with it.
// In our expts, using (default) throughput collector has severe perf ramnifications in
// multi-tennent machines
// The options are based on
// http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html#0.0.0.%20When%20to%20Use%20the%20Concurrent%20Low%20Pause%20Collector|outline
JAVA_OPTS += " -XX:+UseConcMarkSweepGC "
JAVA_OPTS += " -XX:+CMSIncrementalMode "
JAVA_OPTS += " -XX:+CMSIncrementalPacing "
JAVA_OPTS += " -XX:CMSIncrementalDutyCycleMin=0 "
JAVA_OPTS += " -XX:CMSIncrementalDutyCycle=10 "
}
*/
val credentials = UserGroupInformation.getCurrentUser().getCredentials()
val dob = new DataOutputBuffer()
credentials.writeTokenStorageToStream(dob)
ctx.setTokens(ByteBuffer.wrap(dob.getData()))
var javaCommand = "java"
val javaHome = System.getenv("JAVA_HOME")
if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) {
javaCommand = Environment.JAVA_HOME.$() + "/bin/java"
}
val commands = List[String](javaCommand +
" -server " +
// Kill if OOM is raised - leverage yarn's failure handling to cause rescheduling.
// Not killing the task leaves various aspects of the worker and (to some extent) the jvm in
// an inconsistent state.
// TODO: If the OOM is not recoverable by rescheduling it on different node, then do
// 'something' to fail job ... akin to blacklisting trackers in mapred ?
" -XX:OnOutOfMemoryError='kill %p' " +
JAVA_OPTS +
" org.apache.spark.executor.CoarseGrainedExecutorBackend " +
masterAddress + " " +
slaveId + " " +
hostname + " " +
workerCores +
" 1> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" +
" 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr")
val commands = prepareCommand(masterAddress, slaveId, hostname, workerMemory, workerCores)
logInfo("Setting up worker with commands: " + commands)
ctx.setCommands(commands)
......@@ -148,63 +87,4 @@ class WorkerRunnable(
nmClient.startContainer(container, ctx)
}
private def setupDistributedCache(
file: String,
rtype: LocalResourceType,
localResources: HashMap[String, LocalResource],
timestamp: String,
size: String,
vis: String) = {
val uri = new URI(file)
val amJarRsrc = Records.newRecord(classOf[LocalResource]).asInstanceOf[LocalResource]
amJarRsrc.setType(rtype)
amJarRsrc.setVisibility(LocalResourceVisibility.valueOf(vis))
amJarRsrc.setResource(ConverterUtils.getYarnUrlFromURI(uri))
amJarRsrc.setTimestamp(timestamp.toLong)
amJarRsrc.setSize(size.toLong)
localResources(uri.getFragment()) = amJarRsrc
}
def prepareLocalResources: HashMap[String, LocalResource] = {
logInfo("Preparing Local resources")
val localResources = HashMap[String, LocalResource]()
if (System.getenv("SPARK_YARN_CACHE_FILES") != null) {
val timeStamps = System.getenv("SPARK_YARN_CACHE_FILES_TIME_STAMPS").split(',')
val fileSizes = System.getenv("SPARK_YARN_CACHE_FILES_FILE_SIZES").split(',')
val distFiles = System.getenv("SPARK_YARN_CACHE_FILES").split(',')
val visibilities = System.getenv("SPARK_YARN_CACHE_FILES_VISIBILITIES").split(',')
for( i <- 0 to distFiles.length - 1) {
setupDistributedCache(distFiles(i), LocalResourceType.FILE, localResources, timeStamps(i),
fileSizes(i), visibilities(i))
}
}
if (System.getenv("SPARK_YARN_CACHE_ARCHIVES") != null) {
val timeStamps = System.getenv("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS").split(',')
val fileSizes = System.getenv("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES").split(',')
val distArchives = System.getenv("SPARK_YARN_CACHE_ARCHIVES").split(',')
val visibilities = System.getenv("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES").split(',')
for( i <- 0 to distArchives.length - 1) {
setupDistributedCache(distArchives(i), LocalResourceType.ARCHIVE, localResources,
timeStamps(i), fileSizes(i), visibilities(i))
}
}
logInfo("Prepared Local resources " + localResources)
localResources
}
def prepareEnvironment: HashMap[String, String] = {
val env = new HashMap[String, String]()
ClientBase.populateClasspath(yarnConf, sparkConf, System.getenv("SPARK_YARN_LOG4J_PATH") != null, env)
// Allow users to specify some environment variables
Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV"))
System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v }
env
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment