Skip to content
Snippets Groups Projects
  • Josh Rosen's avatar
    cbb7f04a
    Add custom serializer support to PySpark. · cbb7f04a
    Josh Rosen authored
    For now, this only adds MarshalSerializer, but it lays the groundwork
    for other supporting custom serializers.  Many of these mechanisms
    can also be used to support deserialization of different data formats
    sent by Java, such as data encoded by MsgPack.
    
    This also fixes a bug in SparkContext.union().
    cbb7f04a
    History
    Add custom serializer support to PySpark.
    Josh Rosen authored
    For now, this only adds MarshalSerializer, but it lays the groundwork
    for other supporting custom serializers.  Many of these mechanisms
    can also be used to support deserialization of different data formats
    sent by Java, such as data encoded by MsgPack.
    
    This also fixes a bug in SparkContext.union().
accumulators.py 6.96 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
>>> from pyspark.context import SparkContext
>>> sc = SparkContext('local', 'test')
>>> a = sc.accumulator(1)
>>> a.value
1
>>> a.value = 2
>>> a.value
2
>>> a += 5
>>> a.value
7

>>> sc.accumulator(1.0).value
1.0

>>> sc.accumulator(1j).value
1j

>>> rdd = sc.parallelize([1,2,3])
>>> def f(x):
...     global a
...     a += x
>>> rdd.foreach(f)
>>> a.value
13

>>> b = sc.accumulator(0)
>>> def g(x):
...     b.add(x)
>>> rdd.foreach(g)
>>> b.value
6

>>> from pyspark.accumulators import AccumulatorParam
>>> class VectorAccumulatorParam(AccumulatorParam):
...     def zero(self, value):
...         return [0.0] * len(value)
...     def addInPlace(self, val1, val2):
...         for i in xrange(len(val1)):
...              val1[i] += val2[i]
...         return val1
>>> va = sc.accumulator([1.0, 2.0, 3.0], VectorAccumulatorParam())
>>> va.value
[1.0, 2.0, 3.0]
>>> def g(x):
...     global va
...     va += [x] * 3
>>> rdd.foreach(g)
>>> va.value
[7.0, 8.0, 9.0]

>>> rdd.map(lambda x: a.value).collect() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
    ...
Py4JJavaError:...

>>> def h(x):
...     global a
...     a.value = 7
>>> rdd.foreach(h) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
    ...
Py4JJavaError:...

>>> sc.accumulator([1.0, 2.0, 3.0]) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
    ...
Exception:...
"""

import struct
import SocketServer
import threading
from pyspark.cloudpickle import CloudPickler
from pyspark.serializers import read_int, PickleSerializer


pickleSer = PickleSerializer()

# Holds accumulators registered on the current machine, keyed by ID. This is then used to send
# the local accumulator updates back to the driver program at the end of a task.
_accumulatorRegistry = {}


def _deserialize_accumulator(aid, zero_value, accum_param):
    from pyspark.accumulators import _accumulatorRegistry
    accum = Accumulator(aid, zero_value, accum_param)
    accum._deserialized = True
    _accumulatorRegistry[aid] = accum
    return accum


class Accumulator(object):
    """
    A shared variable that can be accumulated, i.e., has a commutative and associative "add"
    operation. Worker tasks on a Spark cluster can add values to an Accumulator with the C{+=}
    operator, but only the driver program is allowed to access its value, using C{value}.
    Updates from the workers get propagated automatically to the driver program.

    While C{SparkContext} supports accumulators for primitive data types like C{int} and
    C{float}, users can also define accumulators for custom types by providing a custom
    L{AccumulatorParam} object. Refer to the doctest of this module for an example.
    """

    def __init__(self, aid, value, accum_param):
        """Create a new Accumulator with a given initial value and AccumulatorParam object"""
        from pyspark.accumulators import _accumulatorRegistry
        self.aid = aid
        self.accum_param = accum_param
        self._value = value
        self._deserialized = False
        _accumulatorRegistry[aid] = self

    def __reduce__(self):
        """Custom serialization; saves the zero value from our AccumulatorParam"""
        param = self.accum_param
        return (_deserialize_accumulator, (self.aid, param.zero(self._value), param))

    @property
    def value(self):
        """Get the accumulator's value; only usable in driver program"""
        if self._deserialized:
            raise Exception("Accumulator.value cannot be accessed inside tasks")
        return self._value

    @value.setter
    def value(self, value):
        """Sets the accumulator's value; only usable in driver program"""
        if self._deserialized:
            raise Exception("Accumulator.value cannot be accessed inside tasks")
        self._value = value

    def add(self, term):
        """Adds a term to this accumulator's value"""
        self._value = self.accum_param.addInPlace(self._value, term)

    def __iadd__(self, term):
        """The += operator; adds a term to this accumulator's value"""
        self.add(term)
        return self

    def __str__(self):
        return str(self._value)

    def __repr__(self):
        return "Accumulator<id=%i, value=%s>" % (self.aid, self._value)


class AccumulatorParam(object):
    """
    Helper object that defines how to accumulate values of a given type.
    """

    def zero(self, value):
        """
        Provide a "zero value" for the type, compatible in dimensions with the
        provided C{value} (e.g., a zero vector)
        """
        raise NotImplementedError

    def addInPlace(self, value1, value2):
        """
        Add two values of the accumulator's data type, returning a new value;
        for efficiency, can also update C{value1} in place and return it.
        """
        raise NotImplementedError


class AddingAccumulatorParam(AccumulatorParam):
    """
    An AccumulatorParam that uses the + operators to add values. Designed for simple types
    such as integers, floats, and lists. Requires the zero value for the underlying type
    as a parameter.
    """

    def __init__(self, zero_value):
        self.zero_value = zero_value

    def zero(self, value):
        return self.zero_value

    def addInPlace(self, value1, value2):
        value1 += value2
        return value1


# Singleton accumulator params for some standard types
INT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0)
FLOAT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0)
COMPLEX_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0j)


class _UpdateRequestHandler(SocketServer.StreamRequestHandler):
    def handle(self):
        from pyspark.accumulators import _accumulatorRegistry
        num_updates = read_int(self.rfile)
        for _ in range(num_updates):
            (aid, update) = pickleSer._read_with_length(self.rfile)
            _accumulatorRegistry[aid] += update
        # Write a byte in acknowledgement
        self.wfile.write(struct.pack("!b", 1))


def _start_update_server():
    """Start a TCP server to receive accumulator updates in a daemon thread, and returns it"""
    server = SocketServer.TCPServer(("localhost", 0), _UpdateRequestHandler)
    thread = threading.Thread(target=server.serve_forever)
    thread.daemon = True
    thread.start()
    return server