Skip to content
Snippets Groups Projects
user avatar
Felix Cheung authored
## What changes were proposed in this pull request?

This PR introduces the new SparkSession API for SparkR.
`sparkR.session.getOrCreate()` and `sparkR.session.stop()`

"getOrCreate" is a bit unusual in R but it's important to name this clearly.

SparkR implementation should
- SparkSession is the main entrypoint (vs SparkContext; due to limited functionality supported with SparkContext in SparkR)
- SparkSession replaces SQLContext and HiveContext (both a wrapper around SparkSession, and because of API changes, supporting all 3 would be a lot more work)
- Changes to SparkSession is mostly transparent to users due to SPARK-10903
- Full backward compatibility is expected - users should be able to initialize everything just in Spark 1.6.1 (`sparkR.init()`), but with deprecation warning
- Mostly cosmetic changes to parameter list - users should be able to move to `sparkR.session.getOrCreate()` easily
- An advanced syntax with named parameters (aka varargs aka "...") is supported; that should be closer to the Builder syntax that is in Scala/Python (which unfortunately does not work in R because it will look like this: `enableHiveSupport(config(config(master(appName(builder(), "foo"), "local"), "first", "value"), "next, "value"))`
- Updating config on an existing SparkSession is supported, the behavior is the same as Python, in which config is applied to both SparkContext and SparkSession
- Some SparkSession changes are not matched in SparkR, mostly because it would be breaking API change: `catalog` object, `createOrReplaceTempView`
- Other SQLContext workarounds are replicated in SparkR, eg. `tables`, `tableNames`
- `sparkR` shell is updated to use the SparkSession entrypoint (`sqlContext` is removed, just like with Scale/Python)
- All tests are updated to use the SparkSession entrypoint
- A bug in `read.jdbc` is fixed

TODO
- [x] Add more tests
- [ ] Separate PR - update all roxygen2 doc coding example
- [ ] Separate PR - update SparkR programming guide

## How was this patch tested?

unit tests, manual tests

shivaram sun-rui rxin

Author: Felix Cheung <felixcheung_m@hotmail.com>
Author: felixcheung <felixcheung_m@hotmail.com>

Closes #13635 from felixcheung/rsparksession.
8c198e24
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.