-
Yu ISHIKAWA authored
cc jkbradley Author: Yu ISHIKAWA <yuu.ishikawa@gmail.com> Closes #10244 from yu-iskw/SPARK-12215.
Yu ISHIKAWA authoredcc jkbradley Author: Yu ISHIKAWA <yuu.ishikawa@gmail.com> Closes #10244 from yu-iskw/SPARK-12215.
layout: global
title: Clustering - spark.ml
displayTitle: Clustering - spark.ml
In this section, we introduce the pipeline API for clustering in mllib.
Table of Contents
- This will become a table of contents (this text will be scraped). {:toc}
K-means
k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||.
KMeans
is implemented as an Estimator
and generates a KMeansModel
as the base model.
Input Columns
Param name | Type(s) | Default | Description |
---|---|---|---|
featuresCol | Vector | "features" | Feature vector |
Output Columns
Param name | Type(s) | Default | Description |
---|---|---|---|
predictionCol | Int | "prediction" | Predicted cluster center |
Example
{% include_example scala/org/apache/spark/examples/ml/KMeansExample.scala %}
{% include_example java/org/apache/spark/examples/ml/JavaKMeansExample.java %}
Latent Dirichlet allocation (LDA)
LDA
is implemented as an Estimator
that supports both EMLDAOptimizer
and OnlineLDAOptimizer
,
and generates a LDAModel
as the base models. Expert users may cast a LDAModel
generated by
EMLDAOptimizer
to a DistributedLDAModel
if needed.
Refer to the Scala API docs for more details.
{% include_example scala/org/apache/spark/examples/ml/LDAExample.scala %}
Refer to the Java API docs for more details.
{% include_example java/org/apache/spark/examples/ml/JavaLDAExample.java %}