-
Xusen Yin authored
JIRA [here](https://issues.apache.org/jira/browse/SPARK-7581). CC jkbradley Author: Xusen Yin <yinxusen@gmail.com> Closes #6113 from yinxusen/SPARK-7581 and squashes the following commits: 1a7d80d [Xusen Yin] merge with master 892a8e9 [Xusen Yin] fix python 3 compatibility ec935bf [Xusen Yin] small fix 3e9fa1d [Xusen Yin] delete note 69fcf85 [Xusen Yin] simplify and add python example 81d21dc [Xusen Yin] add programming guide for Polynomial Expansion 40babfb [Xusen Yin] add java test suite for PolynomialExpansion
Xusen Yin authoredJIRA [here](https://issues.apache.org/jira/browse/SPARK-7581). CC jkbradley Author: Xusen Yin <yinxusen@gmail.com> Closes #6113 from yinxusen/SPARK-7581 and squashes the following commits: 1a7d80d [Xusen Yin] merge with master 892a8e9 [Xusen Yin] fix python 3 compatibility ec935bf [Xusen Yin] small fix 3e9fa1d [Xusen Yin] delete note 69fcf85 [Xusen Yin] simplify and add python example 81d21dc [Xusen Yin] add programming guide for Polynomial Expansion 40babfb [Xusen Yin] add java test suite for PolynomialExpansion
layout: global
title: Feature Extraction, Transformation, and Selection - SparkML
displayTitle: <a href="ml-guide.html">ML</a> - Features
This section covers algorithms for working with features, roughly divided into these groups:
- Extraction: Extracting features from "raw" data
- Transformation: Scaling, converting, or modifying features
- Selection: Selecting a subset from a larger set of features
Table of Contents
- This will become a table of contents (this text will be scraped). {:toc}
Feature Extractors
Hashing Term-Frequency (HashingTF)
HashingTF
is a Transformer
which takes sets of terms (e.g., String
terms can be sets of words) and converts those sets into fixed-length feature vectors.
The algorithm combines Term Frequency (TF) counts with the hashing trick for dimensionality reduction. Please refer to the MLlib user guide on TF-IDF for more details on Term-Frequency.
HashingTF is implemented in
HashingTF.
In the following code segment, we start with a set of sentences. We split each sentence into words using Tokenizer
. For each sentence (bag of words), we hash it into a feature vector. This feature vector could then be passed to a learning algorithm.
val sentenceDataFrame = sqlContext.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsDataFrame = tokenizer.transform(sentenceDataFrame) val hashingTF = new HashingTF().setInputCol("words").setOutputCol("features").setNumFeatures(20) val featurized = hashingTF.transform(wordsDataFrame) featurized.select("features", "label").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.ml.feature.HashingTF; import org.apache.spark.ml.feature.Tokenizer; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(0, "Hi I heard about Spark"), RowFactory.create(0, "I wish Java could use case classes"), RowFactory.create(1, "Logistic regression models are neat") )); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("sentence", DataTypes.StringType, false, Metadata.empty()) }); DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema); Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words"); DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame); int numFeatures = 20; HashingTF hashingTF = new HashingTF() .setInputCol("words") .setOutputCol("features") .setNumFeatures(numFeatures); DataFrame featurized = hashingTF.transform(wordsDataFrame); for (Row r : featurized.select("features", "label").take(3)) { Vector features = r.getAs(0); Double label = r.getDouble(1); System.out.println(features); } {% endhighlight %}
sentenceDataFrame = sqlContext.createDataFrame([ (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") wordsDataFrame = tokenizer.transform(sentenceDataFrame) hashingTF = HashingTF(inputCol="words", outputCol="features", numFeatures=20) featurized = hashingTF.transform(wordsDataFrame) for features_label in featurized.select("features", "label").take(3): print features_label {% endhighlight %}
Feature Transformers
Tokenizer
Tokenization is the process of taking text (such as a sentence) and breaking it into individual terms (usually words). A simple Tokenizer class provides this functionality. The example below shows how to split sentences into sequences of words.
Note: A more advanced tokenizer is provided via RegexTokenizer.
val sentenceDataFrame = sqlContext.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsDataFrame = tokenizer.transform(sentenceDataFrame) wordsDataFrame.select("words", "label").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.ml.feature.Tokenizer; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(0, "Hi I heard about Spark"), RowFactory.create(0, "I wish Java could use case classes"), RowFactory.create(1, "Logistic regression models are neat") )); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("sentence", DataTypes.StringType, false, Metadata.empty()) }); DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema); Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words"); DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame); for (Row r : wordsDataFrame.select("words", "label").take(3)) { java.util.List words = r.getList(0); for (String word : words) System.out.print(word + " "); System.out.println(); } {% endhighlight %}
sentenceDataFrame = sqlContext.createDataFrame([ (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") wordsDataFrame = tokenizer.transform(sentenceDataFrame) for words_label in wordsDataFrame.select("words", "label").take(3): print words_label {% endhighlight %}
Binarizer
Binarization is the process of thresholding numerical features to binary features. As some probabilistic estimators make assumption that the input data is distributed according to Bernoulli distribution, a binarizer is useful for pre-processing the input data with continuous numerical features.
A simple Binarizer class provides this functionality. Besides the common parameters of inputCol
and outputCol
, Binarizer
has the parameter threshold
used for binarizing continuous numerical features. The features greater than the threshold, will be binarized to 1.0. The features equal to or less than the threshold, will be binarized to 0.0. The example below shows how to binarize numerical features.
val data = Array( (0, 0.1), (1, 0.8), (2, 0.2) ) val dataFrame: DataFrame = sqlContext.createDataFrame(data).toDF("label", "feature")
val binarizer: Binarizer = new Binarizer() .setInputCol("feature") .setOutputCol("binarized_feature") .setThreshold(0.5)
val binarizedDataFrame = binarizer.transform(dataFrame) val binarizedFeatures = binarizedDataFrame.select("binarized_feature") binarizedFeatures.collect().foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.ml.feature.Binarizer; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(0, 0.1), RowFactory.create(1, 0.8), RowFactory.create(2, 0.2) )); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("feature", DataTypes.DoubleType, false, Metadata.empty()) }); DataFrame continuousDataFrame = jsql.createDataFrame(jrdd, schema); Binarizer binarizer = new Binarizer() .setInputCol("feature") .setOutputCol("binarized_feature") .setThreshold(0.5); DataFrame binarizedDataFrame = binarizer.transform(continuousDataFrame); DataFrame binarizedFeatures = binarizedDataFrame.select("binarized_feature"); for (Row r : binarizedFeatures.collect()) { Double binarized_value = r.getDouble(0); System.out.println(binarized_value); } {% endhighlight %}
continuousDataFrame = sqlContext.createDataFrame([ (0, 0.1), (1, 0.8), (2, 0.2) ], ["label", "feature"]) binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature") binarizedDataFrame = binarizer.transform(continuousDataFrame) binarizedFeatures = binarizedDataFrame.select("binarized_feature") for binarized_feature, in binarizedFeatures.collect(): print binarized_feature {% endhighlight %}
PolynomialExpansion
Polynomial expansion is the process of expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions. A PolynomialExpansion class provides this functionality. The example below shows how to expand your features into a 3-degree polynomial space.
val data = Array( Vectors.dense(-2.0, 2.3), Vectors.dense(0.0, 0.0), Vectors.dense(0.6, -1.1) ) val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features") val polynomialExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3) val polyDF = polynomialExpansion.transform(df) polyDF.select("polyFeatures").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.VectorUDT; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaSparkContext jsc = ... SQLContext jsql = ... PolynomialExpansion polyExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3); JavaRDD data = jsc.parallelize(Lists.newArrayList( RowFactory.create(Vectors.dense(-2.0, 2.3)), RowFactory.create(Vectors.dense(0.0, 0.0)), RowFactory.create(Vectors.dense(0.6, -1.1)) )); StructType schema = new StructType(new StructField[] { new StructField("features", new VectorUDT(), false, Metadata.empty()), }); DataFrame df = jsql.createDataFrame(data, schema); DataFrame polyDF = polyExpansion.transform(df); Row[] row = polyDF.select("polyFeatures").take(3); for (Row r : row) { System.out.println(r.get(0)); } {% endhighlight %}
df = sqlContext.createDataFrame( [(Vectors.dense([-2.0, 2.3]), ), (Vectors.dense([0.0, 0.0]), ), (Vectors.dense([0.6, -1.1]), )], ["features"]) px = PolynomialExpansion(degree=2, inputCol="features", outputCol="polyFeatures") polyDF = px.transform(df) for expanded in polyDF.select("polyFeatures").take(3): print(expanded) {% endhighlight %}