Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import Tuple
import numpy as np
from scipy.integrate import ode
from src.scene_verifier.agents.base_agent import BaseAgent
from src.scene_verifier.map.lane_map import LaneMap
class NPCAgent(BaseAgent):
def __init__(self, id, code = None, file_name = None):
npc_code_str = "\
class VehicleMode(Enum):\n\
Normal = auto()\n\
\n\
class LaneMode(Enum):\n\
Lane0 = auto()\n\
Lane1 = auto()\n\
Lane2 = auto()\n\
\n\
class State:\n\
x = 0.0\n\
y = 0.0\n\
theta = 0.0\n\
v = 0.0\n\
vehicle_mode: VehicleMode = VehicleMode.Normal\n\
lane_mode: LaneMode = LaneMode.Lane0\n\
\n\
def __init__(self, x, y, theta, v, vehicle_mode: VehicleMode, lane_mode: LaneMode):\n\
self.data = []\n\
\n\
def controller(ego:State, other:State, lane_map:LaneMap):\n\
output = copy.deepcopy(ego)\n\
return output\n\
"
super().__init__(id, npc_code_str, None)
@staticmethod
def dynamic(t, state, u):
x, y, theta, v = state
delta, a = u
x_dot = v*np.cos(theta+delta)
y_dot = v*np.sin(theta+delta)
theta_dot = v/1.75*np.sin(delta)
v_dot = a
return [x_dot, y_dot, theta_dot, v_dot]
def action_handler(self, mode, state, lane_map:LaneMap)->Tuple[float, float]:
x,y,theta,v = state
vehicle_mode = mode[0]
vehicle_lane = mode[1]
vehicle_pos = np.array([x,y])
d = -lane_map.get_lateral_distance(vehicle_lane, vehicle_pos)
psi = lane_map.get_lane_heading(vehicle_lane, vehicle_pos)-theta
steering = psi + np.arctan2(0.45*d, v)
steering = np.clip(steering, -0.61, 0.61)
a = 0
return steering, a
def TC_simulate(self, mode, initialCondition, time_bound, lane_map:LaneMap=None)->np.ndarray:
mode = mode.split(',')
time_step = 0.05
time_bound = float(time_bound)
number_points = int(np.ceil(time_bound/time_step))
t = [i*time_step for i in range(0,number_points)]
init = initialCondition
trace = [[0]+init]
for i in range(len(t)):
steering, a = self.action_handler(mode, init, lane_map)
r = ode(self.dynamic)
r.set_initial_value(init).set_f_params([steering, a])
res:np.ndarray = r.integrate(r.t + time_step)
init = res.flatten().tolist()
trace.append([t[i] + time_step] + init)
return np.array(trace)
class CarAgent(BaseAgent):
def __init__(self, id, code = None, file_name = None):
super().__init__(id, code, file_name)
@staticmethod
def dynamic(t, state, u):
x, y, theta, v = state
delta, a = u
x_dot = v*np.cos(theta+delta)
y_dot = v*np.sin(theta+delta)
theta_dot = v/1.75*np.sin(delta)
v_dot = a
return [x_dot, y_dot, theta_dot, v_dot]
def action_handler(self, mode, state, lane_map:LaneMap)->Tuple[float, float]:
x,y,theta,v = state
vehicle_mode = mode[0]
vehicle_lane = mode[1]
vehicle_pos = np.array([x,y])
a = 0
if vehicle_mode == "Normal":
d = -lane_map.get_lateral_distance(vehicle_lane, vehicle_pos)
elif vehicle_mode == "SwitchLeft":
d = -lane_map.get_lateral_distance(vehicle_lane, vehicle_pos) + 3
elif vehicle_mode == "SwitchRight":
d = -lane_map.get_lateral_distance(vehicle_lane, vehicle_pos) - 3
elif vehicle_mode == "Brake":
d = -lane_map.get_lateral_distance(vehicle_lane, vehicle_pos)
a = -1
if v<=0.02:
a = 0
elif vehicle_mode == 'Stop':
d = -lane_map.get_lateral_distance(vehicle_lane, vehicle_pos)
a = 0
psi = lane_map.get_lane_heading(vehicle_lane, vehicle_pos)-theta
steering = psi + np.arctan2(0.45*d, v)
steering = np.clip(steering, -0.61, 0.61)
return steering, a
def TC_simulate(self, mode, initialCondition, time_bound, lane_map:LaneMap=None)->np.ndarray:
mode = mode.split(',')
time_step = 0.05
time_bound = float(time_bound)
number_points = int(np.ceil(time_bound/time_step))
t = [i*time_step for i in range(0,number_points)]
init = initialCondition
trace = [[0]+init]
for i in range(len(t)):
steering, a = self.action_handler(mode, init, lane_map)
r = ode(self.dynamic)
r.set_initial_value(init).set_f_params([steering, a])
res:np.ndarray = r.integrate(r.t + time_step)
init = res.flatten().tolist()
if init[3] < 0:
init[3] = 0
trace.append([t[i] + time_step] + init)
return np.array(trace)