import numpy as np from arbdmodel import PointParticle, ParticleType, Group, ArbdModel from coords import rotationAboutAxis, quaternion_from_matrix, quaternion_to_matrix from nonbonded import * from copy import copy, deepcopy from nbPot import nbDnaScheme from scipy.special import erf import scipy.optimize as opt from scipy import interpolate import types """ TODO: - document - handle crossovers - connections in the middle of a segment? - merge beads at ends of connected helices? - map to atomic representation - remove performance bottlenecks - test for large systems - assign sequence """ class Location(): """ Site for connection within an object """ def __init__(self, container, address, type_): self.container = container self.address = address self.type_ = type_ self.particle = None class Connection(): """ Abstract base class for connection between two elements """ def __init__(self, A, B, type_ = None): assert( isinstance(A,Location) ) assert( isinstance(B,Location) ) self.A = A self.B = B self.type_ = type_ # class ConnectableElement(Transformable): class ConnectableElement(): """ Abstract base class """ def __init__(self, connections=[]): self.connections = connections def get_connections_and_locations(self, type_=None): """ Returns a list with each entry of the form: connection, location_in_self, location_in_other """ ret = [] for c in self.connections: if type_ is None or c.type_ == type_: if c.A.container == self: ret.append( [c, c.A, c.B] ) elif c.B.container == self: ret.append( [c, c.B, c.A] ) else: raise Exception("Object contains connection that fails to refer to object") return ret def _connect(self, other, connection): self.connections.append(connection) other.connections.append(connection) # def _find_connections(self, loc): # return [c for c in self.connections if c.A == loc or c.B == loc] class Segment(ConnectableElement, Group): """ Base class that describes a segment of DNA. When built from cadnano models, should not span helices """ """Define basic particle types""" dsDNA_particle = ParticleType("D", diffusivity = 43.5, mass = 300, radius = 3, ) orientation_particle = ParticleType("O", diffusivity = 100, mass = 300, radius = 1, ) # orientation_bond = HarmonicBond(10,2) orientation_bond = HarmonicBond(30,1.5, rRange = (0,500) ) ssDNA_particle = ParticleType("S", diffusivity = 43.5, mass = 150, radius = 3, ) def __init__(self, name, num_nts, start_position = np.array((0,0,0)), end_position = None, segment_model = None): Group.__init__(self, name, children=[]) ConnectableElement.__init__(self, connections=[]) self.start_orientation = None self.twist_per_nt = 0 self.beads = [c for c in self.children] # self.beads will not contain orientation beads self._bead_model_generation = 0 # TODO: remove? self.segment_model = segment_model # TODO: remove? self.num_nts = int(num_nts) if end_position is None: end_position = np.array((0,0,self.distance_per_nt*num_nts)) + start_position self.start_position = start_position self.end_position = end_position ## Set up interpolation for positions a = np.array([self.start_position,self.end_position]).T tck, u = interpolate.splprep( a, u=[0,1], s=0, k=1) self.position_spline_params = tck def contour_to_position(self,s): p = interpolate.splev( s, self.position_spline_params ) if len(p) > 1: p = np.array(p).T return p def contour_to_tangent(self,s): t = interpolate.splev( s, self.position_spline_params, der=1 ) t = (t / np.linalg.norm(t,axis=0)) return t.T def contour_to_orientation(self,s): if self.start_orientation is not None: # axis = self.start_orientation.dot( np.array((0,0,1)) ) if self.quaternion_spline_params is None: axis = self.contour_to_tangent(s) orientation = rotationAboutAxis( axis, s*self.twist_per_nt*self.num_nts, normalizeAxis=True ) ## TODO: ensure this is correct # orientation = self.start_orientation.dot(orientation) # .dot( self.start_orientation ) orientation = orientation.dot( self.start_orientation ) else: q = interpolate.splev(s, self.quaternion_spline_params) orientation = quaternion_to_matrix(q) else: orientation = None return orientation def _get_num_beads(self, max_basepairs_per_bead, max_nucleotides_per_bead ): raise NotImplementedError def _generate_one_bead(self, contour_position, nts): raise NotImplementedError def _assign_particles_to_locations(self): raise NotImplementedError def get_all_consecutive_beads(self, number): assert(number >= 1) ## Assume that consecutive beads in self.beads are bonded ret = [] for i in range(len(self.beads)-number+1): tmp = [self.beads[i+j] for j in range(0,number)] ret.append( tmp ) return ret def get_beads_before_bead(self, bead, number, inclusive=False): ## Assume that consecutive beads in self.beads are bonded i = self.beads.index(bead) l = len(self.beads) if i-number < 0: raise Exception("Not enough beads after bead") start = 1 if inclusive: start = 0 return [self.beads[i-j] for j in range(start,number)] def get_beads_after_bead(self, bead, number, inclusive=False): ## Assume that consecutive beads in self.beads are bonded i = self.beads.index(bead) l = len(self.beads) if i+number >= l: raise Exception("Not enough beads after bead") start = 1 if inclusive: start = 0 return [self.beads[i+i] for j in range(start,number)] # def get_bead_pairs_within(self, cutoff): # for b1,b2 in self.get_all_consecutive_beads(self, number) def _generate_beads(self, bead_model, max_basepairs_per_bead, max_nucleotides_per_bead): """ Generate beads (positions, types, etcl) and bonds, angles, dihedrals, exclusions """ ## TODO: decide whether to remove bead_model argument ## (currently unused) # self._bead_model_generation += 1 # self._bead_model_max_nts_per_bead = max_nts_per_bead num_beads = self._get_num_beads( max_basepairs_per_bead, max_nucleotides_per_bead ) nts_per_bead = float(self.num_nts)/num_beads twist_per_bead = nts_per_bead * self.twist_per_nt last = None if num_beads <= 2: ## not yet implemented for dsDNA assert( isinstance(self, SingleStrandedSegment) ) b = self._generate_one_bead(0.5, self.num_nts) self.children.append(b) self.beads.append(b) # don't add orientation bead self._assign_particles_to_locations() return for i in range(num_beads+1): nts = nts_per_bead if i == 0 or i == num_beads: nts *= 0.5 s = i*float(nts_per_bead)/(self.num_nts) # contour b = self._generate_one_bead(s,nts) self.children.append(b) self.beads.append(b) # don't add orientation bead if "orientation_bead" in b.__dict__: # TODO: think of a cleaner approach o = b.orientation_bead self.children.append(o) self.add_bond(b,o, Segment.orientation_bond, exclude=True) self._assign_particles_to_locations() def _regenerate_beads(self, max_nts_per_bead=4, ): ... def _generate_atomic(self, atomic_model): ... class DoubleStrandedSegment(Segment): """ Class that describes a segment of ssDNA. When built from cadnano models, should not span helices """ def __init__(self, name, num_nts, start_position = np.array((0,0,0)), end_position = None, segment_model = None, local_twist = False, num_turns = None, start_orientation = None): self.helical_rise = 10.44 self.distance_per_nt = 3.4 Segment.__init__(self, name, num_nts, start_position, end_position, segment_model) self.local_twist = local_twist if num_turns is None: num_turns = float(num_nts) / self.helical_rise self.twist_per_nt = float(360 * num_turns) / num_nts if start_orientation is None: start_orientation = np.array(((1,0,0),(0,1,0),(0,0,1))) self.start_orientation = start_orientation self.nicks = [] self.start5 = Location( self, address=0, type_= "end5" ) self.start3 = Location( self, address=0, type_ = "end3" ) self.end5 = Location( self, address=-1, type_= "end5" ) self.end3 = Location( self, address=-1, type_ = "end3" ) ## Set up interpolation for azimuthal angles a = np.array([self.start_position,self.end_position]).T tck, u = interpolate.splprep( a, u=[0,1], s=0, k=1) self.position_spline_params = tck ## TODO: initialize sensible spline for orientation self.quaternion_spline_params = None ## Convenience methods def connect_start5(self, end3, type_="intrahelical", force_connection=False): if isinstance(end3, SingleStrandedSegment): end3 = end3.end3 self._connect_ends( self.start5, end3, type_, force_connection = force_connection ) def connect_start3(self, end5, type_="intrahelical", force_connection=False): if isinstance(end5, SingleStrandedSegment): end5 = end5.end5 self._connect_ends( self.start3, end5, type_, force_connection = force_connection ) def connect_end3(self, end5, type_="intrahelical", force_connection=False): if isinstance(end5, SingleStrandedSegment): end5 = end5.end5 self._connect_ends( self.end3, end5, type_, force_connection = force_connection ) def connect_end5(self, end3, type_="intrahelical", force_connection=False): if isinstance(end3, SingleStrandedSegment): end3 = end3.end3 self._connect_ends( self.end5, end3, type_, force_connection = force_connection ) ## Real work def _connect_ends(self, end1, end2, type_, force_connection): ## validate the input for end in (end1, end2): assert( isinstance(end, Location) ) assert( end.type_ in ("end3","end5") ) assert( end1.type_ != end2.type_ ) end1.container._connect( end2.container, Connection( end1, end2, type_=type_ ) ) def _get_num_beads(self, max_basepairs_per_bead, max_nucleotides_per_bead): return (self.num_nts // max_basepairs_per_bead) + 1 def _generate_one_bead(self, contour_position, nts): pos = self.contour_to_position(contour_position) if self.local_twist: orientation = self.contour_to_orientation(contour_position) opos = pos + orientation.dot( np.array((Segment.orientation_bond.r0,0,0)) ) o = PointParticle( Segment.orientation_particle, opos, nts, num_nts=nts, parent=self ) bead = PointParticle( Segment.dsDNA_particle, pos, nts, num_nts=nts, parent=self, orientation_bead=o, contour_position=contour_position ) else: bead = PointParticle( Segment.dsDNA_particle, pos, nts, num_nts=nts, parent=self, contour_position=contour_position ) return bead def _assign_particles_to_locations(self): self.start3.particle = self.start5.particle = self.beads[0] self.end3.particle = self.end5.particle = self.beads[-1] def _generate_atomic(self, atomic_model): ... # def add_crossover(self, locationInA, B, locationInB): # j = Crossover( [self, B], [locationInA, locationInB] ) # self._join(B,j) # def add_internal_crossover(self, locationInA, B, locationInB): # j = Crossover( [self, B], [locationInA, locationInB] ) # self._join(B,j) # def stack_end(self, myEnd): # ## Perhaps this should not really be possible; these ends should be part of same helix # ... # def connect_strand(self, other): # ... # def break_apart(self): # """Break into smaller pieces so that "crossovers" are only at the ends""" # ... class SingleStrandedSegment(Segment): """ Class that describes a segment of ssDNA. When built from cadnano models, should not span helices """ def __init__(self, name, num_nts, start_position = np.array((0,0,0)), end_position = None, segment_model = None): self.distance_per_nt = 5 Segment.__init__(self, name, num_nts, start_position, end_position, segment_model) self.start = self.end5 = Location( self, address=0, type_= "end5" ) self.end = self.end3 = Location( self, address=-1, type_ = "end3" ) def connect_3end(self, end5, force_connection=False): self._connect_end( end5, _5_to_3 = False, force_connection = force_connection ) def connect_5end(self, end3, force_connection=False): self._connect_end( end3, _5_to_3 = True, force_connection = force_connection ) def _connect_end(self, other, _5_to_3, force_connection): assert( isinstance(other, Location) ) if _5_to_3 == True: my_end = self.end5 assert( other.type_ == "end3" ) else: my_end = self.end3 assert( other.type_ == "end5" ) self._connect( other.container, Connection( my_end, other, type_="intrahelical" ) ) def _get_num_beads(self, max_basepairs_per_bead, max_nucleotides_per_bead): # if (self.num_nts // max_nucleotides_per_bead) + 1 <= 1: # pdb.set_trace() return (self.num_nts // max_nucleotides_per_bead) + 1 def _generate_one_bead(self, contour_position, nts): pos = self.contour_to_position(contour_position) return PointParticle( Segment.ssDNA_particle, pos, nts, num_nts=nts, parent=self, contour_position=contour_position ) def _assign_particles_to_locations(self): self.start.particle = self.children[0] self.end.particle = self.children[-1] def _generate_atomic(self, atomic_model): ... class SegmentModel(ArbdModel): def __init__(self, segments=[], local_twist=True, max_basepairs_per_bead=7, max_nucleotides_per_bead=4, dimensions=(1000,1000,1000), temperature=291, timestep=50e-6, cutoff=50, decompPeriod=10000, pairlistDistance=None, nonbondedResolution=0,DEBUG=0): self.DEBUG = DEBUG if DEBUG > 0: print("Building ARBD Model") ArbdModel.__init__(self,segments, dimensions, temperature, timestep, cutoff, decompPeriod, pairlistDistance=None, nonbondedResolution=0) # self.max_basepairs_per_bead = max_basepairs_per_bead # dsDNA # self.max_nucleotides_per_bead = max_nucleotides_per_bead # ssDNA self.children = self.segments = segments self._bonded_potential = dict() # cache bonded potentials self._generate_bead_model( max_basepairs_per_bead, max_nucleotides_per_bead, local_twist) self.useNonbondedScheme( nbDnaScheme ) def get_connections(self,type_=None): """ Find all connections in model, without double-counting """ added=set() ret=[] for s in self.segments: items = [e for e in s.get_connections_and_locations(type_) if e[0] not in added] added.update([e[0] for e in items]) ret.extend( items ) return ret def _get_intrahelical_beads(self): ret = [] for s in self.segments: ret.extend( s.get_all_consecutive_beads(2) ) for c,A,B in self.get_connections("intrahelical"): # TODO: check that b1,b2 not same b1,b2 = [l.particle for l in (A,B)] for b in (b1,b2): assert( b is not None ) ret.append( [b1,b2] ) return ret def _get_intrahelical_angle_beads(self): ret = [] for s in self.segments: ret.extend( s.get_all_consecutive_beads(3) ) for c,A,B in self.get_connections("intrahelical"): s1,s2 = [loc.container for loc in (A,B)] b1,b2 = [loc.particle for loc in (A,B)] for b in (b1,b2): assert( b is not None ) ## TODO: make this code more robust try: b0 = s1.get_beads_before_bead(b1,1) assert(len(b0) == 1) b0 = b0[0] assert( b0 is not None ) ret.append( [b0,b1,b2] ) except: ... try: b0 = s1.get_beads_after_bead(b1,1) assert(len(b0) == 1) b0 = b0[0] assert( b0 is not None ) ret.append( [b2,b1,b0] ) except: ... try: b3 = s2.get_beads_before_bead(b2,1) assert(len(b3) == 1) b3 = b3[0] assert( b3 is not None ) ret.append( [b3,b2,b1] ) except: ... try: b3 = s2.get_beads_after_bead(b2,1) assert(len(b3) == 1) b3 = b3[0] assert( b3 is not None ) ret.append( [b1,b2,b3] ) except: ... return ret # def _get_intrahelical_bead_pairs_within(self, cutoff): # dist = dict() # for b1,b2 in self._get_intrahelical_beads: # dist(b1,b2) # ret = [] # for s in self.segments: # ret.extend( s.get_bead_pairs_within(cutoff) ) # for s1 in self.segments: # for c in s1.connections: # if c.A.container != s1: continue # s2 = c.B.container # if c.type_ == "intrahelical": # ret def _get_potential(self, type_, kSpring, d, max_potential = None): key = (type_,kSpring,d) if key not in self._bonded_potential: if type_ == "bond": self._bonded_potential[key] = HarmonicBond(kSpring,d, rRange=(0,500), max_potential=max_potential) elif type_ == "angle": self._bonded_potential[key] = HarmonicAngle(kSpring,d, max_potential=max_potential) # , resolution = 1, maxForce=0.1) elif type_ == "dihedral": self._bonded_potential[key] = HarmonicDihedral(kSpring,d, max_potential=max_potential) else: raise Exception("Unhandled potential type '%s'" % type_) return self._bonded_potential[key] def get_bond_potential(self, kSpring, d): return self._get_potential("bond", kSpring, d) def get_angle_potential(self, kSpring, d): return self._get_potential("angle", kSpring, d) def get_dihedral_potential(self, kSpring, d, max_potential=None): while d > 180: d-=360 while d < -180: d+=360 return self._get_potential("dihedral", kSpring, d, max_potential) def _getParent(self, *beads ): ## TODO: test if np.all( [b1.parent == b2.parent for b1,b2 in zip(beads[::2],beads[1::2])] ): return beads[0].parent else: return self def _get_twist_spring_constant(self, sep): """ sep in nt """ kT = 0.58622522 # kcal/mol twist_persistence_length = 90 # set semi-arbitrarily as there is a large spread in literature ## = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} ) ## Assume A is small ## int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/ ## Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]] ## Actually, without assumptions I get fitFun below ## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405 ## units "3e-19 erg cm/ 295 k K" "nm" =~ 73 Lp = twist_persistence_length/0.34 fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - np.exp(-sep/Lp) k = opt.leastsq( fitFun, x0=np.exp(-sep/Lp) ) return k[0][0] * 2*kT*0.00030461742 # def _update_segment_positions(self, bead_coordinates): # """ Set new function for each segments functions # contour_to_position and contour_to_orientation """ # dsDnaHelixNeighborDist=50 # dsDnaAllNeighborDist=30 # ssDnaHelixNeighborDist=25 # ssDnaAllNeighborDist=25 # beads = [b in s.beads for s in self.segments] # positions = np.array([b.position for b in beads]) # neighborhood = dict() # ## Assign neighborhood to each bead # for b in beads: # dists = b.position[np.newaxis,:] - positions # dists = np.linalg.norm(dists, axis=-1) # neighborhood[b] = np.where( dists < 50 ) """ Mapping between different resolution models """ def _clear_beads(self): for s in self.segments: s.clear_all() s.beads = [] self.clear_all(keep_children=True) def _update_segment_positions(self, bead_coordinates): """ Set new function for each segments functions contour_to_position and contour_to_orientation """ for s in self.segments: beads = [b for b in s.beads] ids = [b.idx for b in beads] """ Get positions """ positions = bead_coordinates[ids,:].T contours = [b.contour_position for b in beads] tck, u = interpolate.splprep( positions, u=contours, s=0, ) s.position_spline_params = tck """ Get twist """ if 'orientation_bead' in beads[0].__dict__: tangents = s.contour_to_tangent(contours) quats = [] for b,t in zip(beads,tangents): o = b.orientation_bead angleVec = o.position - b.position angleVec = angleVec - angleVec.dot(t)*t angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(t,angleVec) quats.append( quaternion_from_matrix( np.array([t,y,angleVec])) ) quats = np.array(quats) tck, u = interpolate.splprep( quats.T, u=contours, s=0, ) s.quaternion_spline_params = tck ## TODO: set twist def _generate_bead_model(self, max_basepairs_per_bead = 7, max_nucleotides_per_bead = 4, local_twist=False): segments = self.segments """ Generate beads """ if self.DEBUG: print("Generating beads") for s in segments: if local_twist: s.local_twist = True s._generate_beads( self, max_basepairs_per_bead, max_nucleotides_per_bead ) """ Combine beads at junctions as needed """ for c,A,B in self.get_connections(): ... """ Reassign bead types """ if self.DEBUG: print("Assigning bead types") beadtype_s = dict() for segment in segments: for b in segment: b.num_nts = np.around( b.num_nts, decimals=1 ) key = (b.type_.name[0].upper(), b.num_nts) if key in beadtype_s: b.type_ = beadtype_s[key] else: t = deepcopy(b.type_) if key[0] == "D": t.__dict__["nts"] = b.num_nts*2 elif key[0] == "S": t.__dict__["nts"] = b.num_nts elif key[0] == "O": t.__dict__["nts"] = b.num_nts else: raise Exception("TODO") # print(t.nts) t.name = t.name + "%03d" % (10*t.nts) beadtype_s[key] = b.type_ = t """ Add intrahelical bond potentials """ if self.DEBUG: print("Adding intrahelical bond potentials") dists = dict() # built for later use intra_beads = self._get_intrahelical_beads() if self.DEBUG: print(" Adding %d bonds" % len(intra_beads)) for b1,b2 in intra_beads: parent = self._getParent(b1,b2) if b1.parent == b2.parent: sep = 0.5*(b1.num_nts+b2.num_nts) else: sep = 1 conversion = 0.014393265 # units "pN/AA" kcal_mol/AA^2 if b1.type_.name[0] == "D" and b2.type_.name[0] == "D": elastic_modulus = 1000 # pN http://markolab.bmbcb.northwestern.edu/marko/Cocco.CRP.02.pdf d = 3.4*sep k = conversion*elastic_modulus/d else: ## TODO: get better numbers our ssDNA model elastic_modulus = 800 # pN http://markolab.bmbcb.northwestern.edu/marko/Cocco.CRP.02.pdf d = 5*sep k = conversion*elastic_modulus/d # print(sep,d,k) if b1 not in dists: dists[b1] = [] if b2 not in dists: dists[b2] = [] dists[b1].append([b2,sep]) dists[b2].append([b1,sep]) # if not (b1.type_.name[0] == "D" and b2.type_.name[0] == "D"): # continue # dists[[b1,b2]] = dists[[b2,b1]] = sep bond = self.get_bond_potential(k,d) parent.add_bond( b1, b2, bond, exclude=True ) """ Add intrahelical angle potentials """ if self.DEBUG: print("Adding intrahelical angle potentials") for b1,b2,b3 in self._get_intrahelical_angle_beads(): sep = 0 if b1.parent == b2.parent: sep += 0.5*(b1.num_nts+b2.num_nts) else: sep += 1 if b2.parent == b3.parent: sep += 0.5*(b2.num_nts+b3.num_nts) else: sep += 1 parent = self._getParent(b1,b2,b3) kT = 0.58622522 # kcal/mol if b1.type_.name[0] == "D" and b2.type_.name[0] == "D" and b3.type_.name[0] == "D": ## = exp(-s/Lp) = integrate( x^4 exp(-A x^2) / 2, {x, 0, pi} ) / integrate( x^2 exp(-A x^2), {x, 0, pi} ) ## ~ 1 - 3/4A ## where A = k_spring / (2 kT) k = 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 if local_twist: k *= 0.5 # halve because orientation beads have similar springs else: ## TODO: get correct number from ssDNA model k = 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/3))) * 0.00030461742; # kcal_mol/degree^2 # k *= 1e-6 # if (self.num_nts // max_nucleotides_per_bead) + 1 <= 1: # pdb.set_trace() angle = self.get_angle_potential(k,180) parent.add_angle( b1, b2, b3, angle ) """ Add intrahelical exclusions """ if self.DEBUG: print("Adding intrahelical exclusions") beads = dists.keys() def _recursively_get_beads_within(b1,d,done=[]): ret = [] for b2,sep in dists[b1]: if b2 in done: continue if sep < d: ret.append( b2 ) done.append( b2 ) tmp = _recursively_get_beads_within(b2, d-sep, done) if len(tmp) > 0: ret.extend(tmp) return ret exclusions = set() for b1 in beads: exclusions.update( [(b1,b) for b in _recursively_get_beads_within(b1, 20, done=[b1])] ) if self.DEBUG: print("Adding %d exclusions" % len(exclusions)) for b1,b2 in exclusions: parent = self._getParent(b1,b2) parent.add_exclusion( b1, b2 ) """ Twist potentials """ if local_twist: if self.DEBUG: print("Adding twist potentials") ## TODO: decide whether to add bond here # """Add bonds between orientation bead and parent""" # for s in self.segments: # for b,o in zip(s.children[::2],s.children[1::2]): # s.add_bond( for b1 in beads: if "orientation_bead" not in b1.__dict__: continue for b2,sep in dists[b1]: if "orientation_bead" not in b2.__dict__: continue p1,p2 = [b.parent for b in (b1,b2)] o1,o2 = [b.orientation_bead for b in (b1,b2)] parent = self._getParent( b1, b2 ) """ Add heuristic 90 degree potential to keep orientation bead orthogonal """ k = (1.0/2) * 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 pot = self.get_angle_potential(k,90) parent.add_angle(o1,b1,b2, pot) parent.add_angle(b1,b2,o2, pot) ## TODO: improve this twist_per_nt = 0.5 * (p1.twist_per_nt + p2.twist_per_nt) angle = sep*twist_per_nt if angle > 360 or angle < -360: raise Exception("The twist between beads is too large") k = self._get_twist_spring_constant(sep) pot = self.get_dihedral_potential(k,angle,max_potential=1) parent.add_dihedral(o1,b1,b2,o2, pot) """ Add connection potentials """ for c,A,B in self.get_connections("terminal_crossover"): b1,b2 = [loc.particle for loc in (c.A,c.B)] pot = self.get_bond_potential(4,18.5) self.add_bond(b1,b2, pot) self._updateParticleOrder() # def get_bead(self, location): # if type(location.container) is not list: # s = self.segments.index(location.container) # s.get_bead(location.address) # else: # r # ...