import pdb import numpy as np import random from .model.arbdmodel import PointParticle, ParticleType, Group, ArbdModel from .coords import rotationAboutAxis, quaternion_from_matrix, quaternion_to_matrix from .model.nonbonded import * from copy import copy, deepcopy from .model.nbPot import nbDnaScheme from scipy.special import erf import scipy.optimize as opt from scipy import interpolate from .model.CanonicalNucleotideAtoms import canonicalNtFwd, canonicalNtRev, seqComplement from .model.CanonicalNucleotideAtoms import enmTemplateHC, enmTemplateSQ, enmCorrectionsHC # import pdb """ TODO: + fix handling of crossovers for atomic representation + map to atomic representation + add nicks + transform ssDNA nucleotides - shrink ssDNA + shrink dsDNA backbone + make orientation continuous + sequence - handle circular dna + ensure crossover bead potentials aren't applied twice + remove performance bottlenecks - test for large systems + assign sequence + ENM - rework Location class - remove recursive calls - document - add unit test of helices connected to themselves """ class ParticleNotConnectedError(Exception): pass class Location(): """ Site for connection within an object """ def __init__(self, container, address, type_, on_fwd_strand = True): ## TODO: remove cyclic references(?) self.container = container self.address = address # represents position along contour length in segment # assert( type_ in ("end3","end5") ) # TODO remove or make conditional self.on_fwd_strand = on_fwd_strand self.type_ = type_ self.particle = None self.connection = None self.is_3prime_side_of_connection = None self.prev_in_strand = None self.next_in_strand = None self.combine = None # some locations might be combined in bead model def get_connected_location(self): if self.connection is None: return None else: return self.connection.other(self) def set_connection(self, connection, is_3prime_side_of_connection): self.connection = connection # TODO weakref? self.is_3prime_side_of_connection = is_3prime_side_of_connection def get_nt_pos(self): try: pos = self.container.contour_to_nt_pos(self.address, round_nt=True) except: if self.address == 0: pos = 0 elif self.address == 1: pos = self.container.num_nt-1 else: raise return pos def __repr__(self): if self.on_fwd_strand: on_fwd = "on_fwd_strand" else: on_fwd = "on_rev_strand" return "".format( self.container.name, self.type_, self.address, self.on_fwd_strand) class Connection(): """ Abstract base class for connection between two elements """ def __init__(self, A, B, type_ = None): assert( isinstance(A,Location) ) assert( isinstance(B,Location) ) self.A = A self.B = B self.type_ = type_ def other(self, location): if location is self.A: return self.B elif location is self.B: return self.A else: raise Exception("OutOfBoundsError") def delete(self): self.A.container.connections.remove(self) self.B.container.connections.remove(self) self.A.connection = None self.B.connection = None def __repr__(self): return "".format( self.A, self.type_, self.B ) # class ConnectableElement(Transformable): class ConnectableElement(): """ Abstract base class """ def __init__(self, connection_locations=None, connections=None): if connection_locations is None: connection_locations = [] if connections is None: connections = [] ## TODO decide on names self.locations = self.connection_locations = connection_locations self.connections = connections def get_locations(self, type_=None, exclude=()): locs = [l for l in self.connection_locations if (type_ is None or l.type_ == type_) and l.type_ not in exclude] counter = dict() for l in locs: if l in counter: counter[l] += 1 else: counter[l] = 1 assert( np.all( [counter[l] == 1 for l in locs] ) ) return locs def get_location_at(self, address, on_fwd_strand=True, new_type="crossover"): loc = None if (self.num_nt == 1): # import pdb # pdb.set_trace() ## Assumes that intrahelical connections have been made before crossovers for l in self.locations: if l.on_fwd_strand == on_fwd_strand and l.connection is None: assert(loc is None) loc = l # assert( loc is not None ) else: for l in self.locations: if l.address == address and l.on_fwd_strand == on_fwd_strand: assert(loc is None) loc = l if loc is None: loc = Location( self, address=address, type_=new_type, on_fwd_strand=on_fwd_strand ) return loc def get_connections_and_locations(self, connection_type=None, exclude=()): """ Returns a list with each entry of the form: connection, location_in_self, location_in_other """ type_ = connection_type ret = [] for c in self.connections: if (type_ is None or c.type_ == type_) and c.type_ not in exclude: if c.A.container is self: ret.append( [c, c.A, c.B] ) elif c.B.container is self: ret.append( [c, c.B, c.A] ) else: import pdb pdb.set_trace() raise Exception("Object contains connection that fails to refer to object") return ret def _connect(self, other, connection, in_3prime_direction=None): ## TODO fix circular references A,B = [connection.A, connection.B] if in_3prime_direction is not None: A.is_3prime_side_of_connection = not in_3prime_direction B.is_3prime_side_of_connection = in_3prime_direction A.connection = B.connection = connection self.connections.append(connection) other.connections.append(connection) l = A.container.locations if A not in l: l.append(A) l = B.container.locations if B not in l: l.append(B) # def _find_connections(self, loc): # return [c for c in self.connections if c.A == loc or c.B == loc] class SegmentParticle(PointParticle): def __init__(self, type_, position, name="A", segname="A", **kwargs): self.name = name self.contour_position = None PointParticle.__init__(self, type_, position, name=name, segname=segname, **kwargs) self.intrahelical_neighbors = [] self.other_neighbors = [] self.locations = [] def get_intrahelical_above(self): """ Returns bead directly above self """ assert( len(self.intrahelical_neighbors) <= 2 ) for b in self.intrahelical_neighbors: if b.get_contour_position(self.parent) > self.contour_position: return b def get_intrahelical_below(self): """ Returns bead directly below self """ assert( len(self.intrahelical_neighbors) <= 2 ) for b in self.intrahelical_neighbors: if b.get_contour_position(self.parent) < self.contour_position: return b def _neighbor_should_be_added(self,b): c1 = self.contour_position c2 = b.get_contour_position(self.parent) if c2 < c1: b0 = self.get_intrahelical_below() else: b0 = self.get_intrahelical_above() if b0 is not None: c0 = b0.get_contour_position(self.parent) if np.abs(c2-c1) < np.abs(c0-c1): ## remove b0 self.intrahelical_neighbors.remove(b0) b0.intrahelical_neighbors.remove(self) return True else: return False return True def make_intrahelical_neighbor(self,b): add1 = self._neighbor_should_be_added(b) add2 = b._neighbor_should_be_added(self) if add1 and add2: assert(len(b.intrahelical_neighbors) <= 1) assert(len(self.intrahelical_neighbors) <= 1) self.intrahelical_neighbors.append(b) b.intrahelical_neighbors.append(self) def get_nt_position(self, seg): """ Returns the "address" of the nucleotide relative to seg in nucleotides, taking the shortest (intrahelical) contour length route to seg """ if seg == self.parent: return seg.contour_to_nt_pos(self.contour_position) else: pos = self.get_contour_position(seg) return seg.contour_to_nt_pos(pos) def get_contour_position(self,seg): if seg == self.parent: return self.contour_position else: cutoff = 30*3 target_seg = seg ## depth-first search ## TODO cache distances to nearby locations? def descend_search_tree(seg, contour_in_seg, distance=0, visited_segs=None): nonlocal cutoff if visited_segs is None: visited_segs = [] if seg == target_seg: # pdb.set_trace() ## Found a segment in our target sign = (contour_in_seg == 1) - (contour_in_seg == 0) assert( sign in (1,-1) ) if distance < cutoff: # TODO: check if this does anything cutoff = distance return [[distance, contour_in_seg+sign*seg.nt_pos_to_contour(distance)]] if distance > cutoff: return None ret_list = [] ## Find intrahelical locations in seg that we might pass through for c,A,B in seg.get_connections_and_locations("intrahelical"): if B.container in visited_segs: continue dx = seg.contour_to_nt_pos( np.abs(A.address-contour_in_seg), round_nt=False) results = descend_search_tree( B.container, B.address, distance+dx, visited_segs + [seg] ) if results is not None: ret_list.extend( results ) return ret_list results = descend_search_tree(self.parent, self.contour_position) if results is None or len(results) == 0: raise Exception("Could not find location in segment") # TODO better error return sorted(results,key=lambda x:x[0])[0][1] # nt_pos = self.get_nt_position(seg) # return seg.nt_pos_to_contour(nt_pos) def update_position(self, contour_position): self.contour_position = contour_position self.position = self.parent.contour_to_position(contour_position) if 'orientation_bead' in self.__dict__: o = self.orientation_bead o.contour_position = contour_position orientation = self.parent.contour_to_orientation(contour_position) if orientation is None: print("WARNING: local_twist is True, but orientation is None; using identity") orientation = np.eye(3) o.position = self.position + orientation.dot( np.array((Segment.orientation_bond.r0,0,0)) ) ## TODO break this class into smaller, better encapsulated pieces class Segment(ConnectableElement, Group): """ Base class that describes a segment of DNA. When built from cadnano models, should not span helices """ """Define basic particle types""" dsDNA_particle = ParticleType("D", diffusivity = 43.5, mass = 300, radius = 3, ) orientation_particle = ParticleType("O", diffusivity = 100, mass = 300, radius = 1, ) # orientation_bond = HarmonicBond(10,2) orientation_bond = HarmonicBond(30,1.5, rRange = (0,500) ) ssDNA_particle = ParticleType("S", diffusivity = 43.5, mass = 150, radius = 3, ) def __init__(self, name, num_nt, start_position = None, end_position = None, segment_model = None): if start_position is None: start_position = np.array((0,0,0)) Group.__init__(self, name, children=[]) ConnectableElement.__init__(self, connection_locations=[], connections=[]) self.resname = name self.start_orientation = None self.twist_per_nt = 0 self.beads = [c for c in self.children] # self.beads will not contain orientation beads self._bead_model_generation = 0 # TODO: remove? self.segment_model = segment_model # TODO: remove? self.strand_pieces = dict() for d in ('fwd','rev'): self.strand_pieces[d] = [] self.num_nt = int(num_nt) if end_position is None: end_position = np.array((0,0,self.distance_per_nt*num_nt)) + start_position self.start_position = start_position self.end_position = end_position ## Set up interpolation for positions self._set_splines_from_ends() self.sequence = None def __repr__(self): return "<{} {}[{:d}]>".format( type(self), self.name, self.num_nt ) def _set_splines_from_ends(self): a = np.array([self.start_position,self.end_position]).T tck, u = interpolate.splprep( a, u=[0,1], s=0, k=1) self.position_spline_params = tck self.quaternion_spline_params = None def clear_all(self): Group.clear_all(self) # TODO: use super? self.beads = [] for c,loc,other in self.get_connections_and_locations(): loc.particle = None def contour_to_nt_pos(self, contour_pos, round_nt=False): nt = contour_pos*(self.num_nt) - 0.5 if round_nt: assert( np.isclose(np.around(nt),nt) ) nt = np.around(nt) return nt def nt_pos_to_contour(self,nt_pos): return (nt_pos+0.5)/(self.num_nt) def contour_to_position(self,s): p = interpolate.splev( s, self.position_spline_params ) if len(p) > 1: p = np.array(p).T return p def contour_to_tangent(self,s): t = interpolate.splev( s, self.position_spline_params, der=1 ) t = (t / np.linalg.norm(t,axis=0)) return t.T def contour_to_orientation(self,s): assert( isinstance(s,float) or isinstance(s,int) or len(s) == 1 ) # TODO make vectorized version if self.quaternion_spline_params is None: axis = self.contour_to_tangent(s) axis = axis / np.linalg.norm(axis) rotAxis = np.cross(axis,np.array((0,0,1))) rotAxisL = np.linalg.norm(rotAxis) zAxis = np.array((0,0,1)) if rotAxisL > 0.001: theta = np.arcsin(rotAxisL) * 180/np.pi if axis.dot(zAxis) < 0: theta = 180-theta orientation0 = rotationAboutAxis( rotAxis/rotAxisL, theta, normalizeAxis=False ).T else: orientation0 = np.eye(3) if axis.dot(zAxis) > 0 else \ rotationAboutAxis( np.array((1,0,0)), 180, normalizeAxis=False ) orientation = rotationAboutAxis( axis, self.twist_per_nt*self.contour_to_nt_pos(s), normalizeAxis=False ) orientation = orientation.dot(orientation0) else: q = interpolate.splev( s, self.quaternion_spline_params ) if len(q) > 1: q = np.array(q).T # TODO: is this needed? orientation = quaternion_to_matrix(q) return orientation def get_contour_sorted_connections_and_locations(self,type_): sort_fn = lambda c: c[1].address cl = self.get_connections_and_locations(type_) return sorted(cl, key=sort_fn) def randomize_unset_sequence(self): bases = list(seqComplement.keys()) # bases = ['T'] ## FOR DEBUG if self.sequence is None: self.sequence = [random.choice(bases) for i in range(self.num_nt)] else: assert(len(self.sequence) == self.num_nt) # TODO move for i in range(len(self.sequence)): if self.sequence[i] is None: self.sequence[i] = random.choice(bases) def _get_num_beads(self, max_basepairs_per_bead, max_nucleotides_per_bead ): raise NotImplementedError def _generate_one_bead(self, contour_position, nts): raise NotImplementedError def _generate_atomic_nucleotide(self, contour_position, is_fwd, seq, scale): """ Seq should include modifications like 5T, T3 Tsinglet; direction matters too """ # print("Generating nucleotide at {}".format(contour_position)) pos = self.contour_to_position(contour_position) orientation = self.contour_to_orientation(contour_position) """ deleteme ## TODO: move this code (?) if orientation is None: import pdb pdb.set_trace() axis = self.contour_to_tangent(contour_position) angleVec = np.array([1,0,0]) if axis.dot(angleVec) > 0.9: angleVec = np.array([0,1,0]) angleVec = angleVec - angleVec.dot(axis)*axis angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(axis,angleVec) orientation = np.array([angleVec,y,axis]).T ## TODO: improve placement of ssDNA # rot = rotationAboutAxis( axis, contour_position*self.twist_per_nt*self.num_nt, normalizeAxis=True ) # orientation = rot.dot(orientation) else: orientation = orientation """ key = seq nt_dict = canonicalNtFwd if is_fwd else canonicalNtRev atoms = nt_dict[ key ].generate() # TODO: clone? atoms.orientation = orientation.dot(atoms.orientation) if isinstance(self, SingleStrandedSegment): if scale is not None and scale != 1: for a in atoms: a.position = scale*a.position a.beta = 0 atoms.position = pos - atoms.atoms_by_name["C1'"].collapsedPosition() else: if scale is not None and scale != 1: if atoms.sequence in ("A","G"): r0 = atoms.atoms_by_name["N9"].position else: r0 = atoms.atoms_by_name["N1"].position for a in atoms: if a.name[-1] in ("'","P","T"): a.position = scale*(a.position-r0) + r0 a.beta = 0 atoms.position = pos return atoms def add_location(self, nt, type_, on_fwd_strand=True): ## Create location if needed, add to segment c = self.nt_pos_to_contour(nt) assert(c >= 0 and c <= 1) # TODO? loc = self.Location( address=c, type_=type_, on_fwd_strand=is_fwd ) loc = Location( self, address=c, type_=type_, on_fwd_strand=on_fwd_strand ) self.locations.append(loc) ## TODO? Replace with abstract strand-based model? def add_5prime(self, nt, on_fwd_strand=True): if isinstance(self,SingleStrandedSegment): on_fwd_strand = True self.add_location(nt,"5prime",on_fwd_strand) def add_3prime(self, nt, on_fwd_strand=True): if isinstance(self,SingleStrandedSegment): on_fwd_strand = True self.add_location(nt,"3prime",on_fwd_strand) def get_3prime_locations(self): return sorted(self.get_locations("3prime"),key=lambda x: x.address) def get_5prime_locations(self): ## TODO? ensure that data is consistent before _build_model calls return sorted(self.get_locations("5prime"),key=lambda x: x.address) def iterate_connections_and_locations(self, reverse=False): ## connections to other segments cl = self.get_contour_sorted_connections_and_locations() if reverse: cl = cl[::-1] for c in cl: yield c ## TODO rename def _add_strand_piece(self, strand_piece): """ Registers a strand segment within this object """ ## TODO use weakref d = 'fwd' if strand_piece.is_fwd else 'rev' ## Validate strand_piece (ensure no clashes) for s in self.strand_pieces[d]: l,h = sorted((s.start,s.end)) for value in (strand_piece.start,strand_piece.end): assert( value < l or value > h ) ## Add strand_piece in correct order self.strand_pieces[d].append(strand_piece) self.strand_pieces[d] = sorted(self.strand_pieces[d], key = lambda x: x.start) ## TODO rename def get_strand_segment(self, nt_pos, is_fwd, move_at_least=0.5): """ Walks through locations, checking for crossovers """ # if self.name in ("6-1","1-1"): # import pdb # pdb.set_trace() move_at_least = 0 ## Iterate through locations # locations = sorted(self.locations, key=lambda l:(l.address,not l.on_fwd_strand), reverse=(not is_fwd)) def loc_rank(l): nt = l.get_nt_pos() ## optionally add logic about type of connection return (nt, not l.on_fwd_strand) # locations = sorted(self.locations, key=lambda l:(l.address,not l.on_fwd_strand), reverse=(not is_fwd)) locations = sorted(self.locations, key=loc_rank, reverse=(not is_fwd)) # print(locations) for l in locations: # TODOTODO probably okay if l.address == 0: pos = 0.0 elif l.address == 1: pos = self.num_nt-1 else: pos = self.contour_to_nt_pos(l.address, round_nt=True) ## DEBUG ## Skip locations encountered before our strand # tol = 0.1 # if is_fwd: # if pos-nt_pos <= tol: continue # elif nt_pos-pos <= tol: continue if (pos-nt_pos)*(2*is_fwd-1) < move_at_least: continue ## TODO: remove move_at_least if np.isclose(pos,nt_pos): if l.is_3prime_side_of_connection: continue ## Stop if we found the 3prime end if l.on_fwd_strand == is_fwd and l.type_ == "3prime": # print(" found end at",l) return pos, None, None, None, None ## Check location connections c = l.connection if c is None: continue B = c.other(l) ## Found a location on the same strand? if l.on_fwd_strand == is_fwd: # print(" passing through",l) # print("from {}, connection {} to {}".format(nt_pos,l,B)) Bpos = B.get_nt_pos() return pos, B.container, Bpos, B.on_fwd_strand, 0.5 ## Stop at other strand crossovers so basepairs line up elif c.type_ == "crossover": if nt_pos == pos: continue # print(" pausing at",l) return pos, l.container, pos+(2*is_fwd-1), is_fwd, 0 raise Exception("Shouldn't be here") # print("Shouldn't be here") ## Made it to the end of the segment without finding a connection return 1*is_fwd, None, None, None def get_nearest_bead(self, contour_position): if len(self.beads) < 1: return None cs = np.array([b.contour_position for b in self.beads]) # TODO: cache # TODO: include beads in connections? i = np.argmin((cs - contour_position)**2) return self.beads[i] def _get_atomic_nucleotide(self, nucleotide_idx, is_fwd=True): d = 'fwd' if is_fwd else 'rev' for s in self.strand_pieces[d]: try: return s.get_nucleotide(nucleotide_idx) except: pass raise Exception("Could not find nucleotide in {} at {}.{}".format( self, nucleotide_idx, d )) def get_all_consecutive_beads(self, number): assert(number >= 1) ## Assume that consecutive beads in self.beads are bonded ret = [] for i in range(len(self.beads)-number+1): tmp = [self.beads[i+j] for j in range(0,number)] ret.append( tmp ) return ret def _add_bead(self,b,set_contour=False): if set_contour: b.contour_position = b.get_contour_position(self) # assert(b.parent is None) if b.parent is not None: b.parent.children.remove(b) self.add(b) self.beads.append(b) # don't add orientation bead if "orientation_bead" in b.__dict__: # TODO: think of a cleaner approach o = b.orientation_bead o.contour_position = b.contour_position if o.parent is not None: o.parent.children.remove(o) self.add(o) self.add_bond(b,o, Segment.orientation_bond, exclude=True) def _rebuild_children(self, new_children): # print("_rebuild_children on %s" % self.name) old_children = self.children old_beads = self.beads self.children = [] self.beads = [] if True: ## TODO: remove this if duplicates are never found # print("Searching for duplicate particles...") ## Remove duplicates, preserving order tmp = [] for c in new_children: if c not in tmp: tmp.append(c) else: print(" DUPLICATE PARTICLE FOUND!") new_children = tmp for b in new_children: self.beads.append(b) self.children.append(b) if "orientation_bead" in b.__dict__: # TODO: think of a cleaner approach self.children.append(b.orientation_bead) # tmp = [c for c in self.children if c not in old_children] # assert(len(tmp) == 0) # tmp = [c for c in old_children if c not in self.children] # assert(len(tmp) == 0) assert(len(old_children) == len(self.children)) assert(len(old_beads) == len(self.beads)) def _generate_beads(self, bead_model, max_basepairs_per_bead, max_nucleotides_per_bead): """ Generate beads (positions, types, etc) and bonds, angles, dihedrals, exclusions """ ## TODO: decide whether to remove bead_model argument ## (currently unused) ## First find points between-which beads must be generated # conn_locs = self.get_contour_sorted_connections_and_locations() # locs = [A for c,A,B in conn_locs] # existing_beads = [l.particle for l in locs if l.particle is not None] # if self.name == "31-2": # pdb.set_trace() existing_beads = {l.particle for l in self.locations if l.particle is not None} existing_beads = sorted( list(existing_beads), key=lambda b: b.get_contour_position(self) ) if len(existing_beads) != len(set(existing_beads)): pdb.set_trace() for b in existing_beads: assert(b.parent is not None) ## Add ends if they don't exist yet ## TODOTODO: test 1 nt segments? if len(existing_beads) == 0 or existing_beads[0].get_nt_position(self) >= 0.5: # if len(existing_beads) > 0: # assert(existing_beads[0].get_nt_position(self) >= 0.5) b = self._generate_one_bead( self.nt_pos_to_contour(0), 0) existing_beads = [b] + existing_beads if existing_beads[-1].get_nt_position(self)-(self.num_nt-1) < -0.5: b = self._generate_one_bead( self.nt_pos_to_contour(self.num_nt-1), 0) existing_beads.append(b) assert(len(existing_beads) > 1) ## Walk through existing_beads, add beads between tmp_children = [] # build list of children in nice order last = None for I in range(len(existing_beads)-1): eb1,eb2 = [existing_beads[i] for i in (I,I+1)] assert( eb1 is not eb2 ) # if np.isclose(eb1.position[2], eb2.position[2]): # import pdb # pdb.set_trace() # print(" %s working on %d to %d" % (self.name, eb1.position[2], eb2.position[2])) e_ds = eb2.get_contour_position(self) - eb1.get_contour_position(self) num_beads = self._get_num_beads( e_ds, max_basepairs_per_bead, max_nucleotides_per_bead ) ## Ensure there is a ssDNA bead between dsDNA beads if num_beads == 0 and isinstance(self,SingleStrandedSegment) and isinstance(eb1.parent,DoubleStrandedSegment) and isinstance(eb2.parent,DoubleStrandedSegment): num_beads = 1 ## TODO similarly ensure there is a dsDNA bead between ssDNA beads ds = e_ds / (num_beads+1) nts = ds*self.num_nt eb1.num_nt += 0.5*nts eb2.num_nt += 0.5*nts ## Add beads if eb1.parent == self: tmp_children.append(eb1) s0 = eb1.get_contour_position(self) if last is not None: last.make_intrahelical_neighbor(eb1) last = eb1 for j in range(num_beads): s = ds*(j+1) + s0 # if self.name in ("51-2","51-3"): # if self.name in ("31-2",): # print(" adding bead at {}".format(s)) b = self._generate_one_bead(s,nts) last.make_intrahelical_neighbor(b) last = b tmp_children.append(b) last.make_intrahelical_neighbor(eb2) if eb2.parent == self: tmp_children.append(eb2) # if self.name in ("31-2",): # pdb.set_trace() self._rebuild_children(tmp_children) def _regenerate_beads(self, max_nts_per_bead=4, ): ... class DoubleStrandedSegment(Segment): """ Class that describes a segment of ssDNA. When built from cadnano models, should not span helices """ def __init__(self, name, num_bp, start_position = np.array((0,0,0)), end_position = None, segment_model = None, local_twist = False, num_turns = None, start_orientation = None, twist_persistence_length = 90 ): self.helical_rise = 10.44 self.distance_per_nt = 3.4 Segment.__init__(self, name, num_bp, start_position, end_position, segment_model) self.num_bp = self.num_nt self.local_twist = local_twist if num_turns is None: num_turns = float(num_bp) / self.helical_rise self.twist_per_nt = float(360 * num_turns) / num_bp if start_orientation is None: start_orientation = np.eye(3) # np.array(((1,0,0),(0,1,0),(0,0,1))) self.start_orientation = start_orientation self.twist_persistence_length = twist_persistence_length self.nicks = [] self.start = self.start5 = Location( self, address=0, type_= "end5" ) self.start3 = Location( self, address=0, type_ = "end3", on_fwd_strand=False ) self.end = self.end3 = Location( self, address=1, type_ = "end3" ) self.end5 = Location( self, address=1, type_= "end5", on_fwd_strand=False ) # for l in (self.start5,self.start3,self.end3,self.end5): # self.locations.append(l) ## Set up interpolation for azimuthal angles a = np.array([self.start_position,self.end_position]).T tck, u = interpolate.splprep( a, u=[0,1], s=0, k=1) self.position_spline_params = tck ## TODO: initialize sensible spline for orientation ## Convenience methods ## TODO: add errors if unrealistic connections are made ## TODO: make connections automatically between unconnected strands def connect_start5(self, end3, type_="intrahelical", force_connection=False): if isinstance(end3, SingleStrandedSegment): end3 = end3.end3 self._connect_ends( self.start5, end3, type_, force_connection = force_connection ) def connect_start3(self, end5, type_="intrahelical", force_connection=False): if isinstance(end5, SingleStrandedSegment): end5 = end5.start5 self._connect_ends( self.start3, end5, type_, force_connection = force_connection ) def connect_end3(self, end5, type_="intrahelical", force_connection=False): if isinstance(end5, SingleStrandedSegment): end5 = end5.start5 self._connect_ends( self.end3, end5, type_, force_connection = force_connection ) def connect_end5(self, end3, type_="intrahelical", force_connection=False): if isinstance(end3, SingleStrandedSegment): end3 = end3.end3 self._connect_ends( self.end5, end3, type_, force_connection = force_connection ) def add_crossover(self, nt, other, other_nt, strands_fwd=(True,False), nt_on_5prime=True, type_="crossover"): """ Add a crossover between two helices """ ## Validate other, nt, other_nt ## TODO if isinstance(other,SingleStrandedSegment): other.add_crossover(other_nt, self, nt, strands_fwd[::-1], not nt_on_5prime) else: ## Create locations, connections and add to segments c = self.nt_pos_to_contour(nt) assert(c >= 0 and c <= 1) loc = self.get_location_at(c, strands_fwd[0]) c = other.nt_pos_to_contour(other_nt) # TODOTODO: may need to subtract or add a little depending on 3prime/5prime assert(c >= 0 and c <= 1) other_loc = other.get_location_at(c, strands_fwd[1]) self._connect(other, Connection( loc, other_loc, type_=type_ )) if nt_on_5prime: loc.is_3prime_side_of_connection = False other_loc.is_3prime_side_of_connection = True else: loc.is_3prime_side_of_connection = True other_loc.is_3prime_side_of_connection = False ## Real work def _connect_ends(self, end1, end2, type_, force_connection): ## TODO remove self? ## validate the input for end in (end1, end2): assert( isinstance(end, Location) ) assert( end.type_ in ("end3","end5") ) assert( end1.type_ != end2.type_ ) ## Remove other connections involving these points if end1.connection is not None: print("WARNING: reconnecting {}".format(end1)) end1.connection.delete() if end2.connection is not None: print("WARNING: reconnecting {}".format(end2)) end2.connection.delete() ## Create and add connection if end2.type_ == "end5": end1.container._connect( end2.container, Connection( end1, end2, type_=type_ ), in_3prime_direction=True ) else: end2.container._connect( end1.container, Connection( end2, end1, type_=type_ ), in_3prime_direction=True ) def _get_num_beads(self, contour, max_basepairs_per_bead, max_nucleotides_per_bead): # return int(contour*self.num_nt // max_basepairs_per_bead) return int(contour*(self.num_nt**2/(self.num_nt+1)) // max_basepairs_per_bead) def _generate_one_bead(self, contour_position, nts): pos = self.contour_to_position(contour_position) if self.local_twist: orientation = self.contour_to_orientation(contour_position) if orientation is None: print("WARNING: local_twist is True, but orientation is None; using identity") orientation = np.eye(3) opos = pos + orientation.dot( np.array((Segment.orientation_bond.r0,0,0)) ) # if np.linalg.norm(pos) > 1e3: # pdb.set_trace() assert(np.linalg.norm(opos-pos) < 10 ) o = SegmentParticle( Segment.orientation_particle, opos, name="O", contour_position = contour_position, num_nt=nts, parent=self ) bead = SegmentParticle( Segment.dsDNA_particle, pos, name="DNA", num_nt=nts, parent=self, orientation_bead=o, contour_position=contour_position ) else: bead = SegmentParticle( Segment.dsDNA_particle, pos, name="DNA", num_nt=nts, parent=self, contour_position=contour_position ) self._add_bead(bead) return bead class SingleStrandedSegment(Segment): """ Class that describes a segment of ssDNA. When built from cadnano models, should not span helices """ def __init__(self, name, num_nt, start_position = None, end_position = None, segment_model = None): if start_position is None: start_position = np.array((0,0,0)) self.distance_per_nt = 5 Segment.__init__(self, name, num_nt, start_position, end_position, segment_model) self.start = self.start5 = Location( self, address=0, type_= "end5" ) # TODO change type_? self.end = self.end3 = Location( self, address=1, type_ = "end3" ) # for l in (self.start5,self.end3): # self.locations.append(l) def connect_end3(self, end5, force_connection=False): self._connect_end( end5, _5_to_3 = True, force_connection = force_connection ) def connect_5end(self, end3, force_connection=False): # TODO: change name or possibly deprecate self._connect_end( end3, _5_to_3 = False, force_connection = force_connection ) def _connect_end(self, other, _5_to_3, force_connection): assert( isinstance(other, Location) ) if _5_to_3 == True: seg1 = self seg2 = other.container end1 = self.end3 end2 = other # assert( other.type_ == "end5" ) if (other.type_ is not "end5"): print("Warning: code does not prevent connecting 3prime to 3prime, etc") else: seg1 = other.container seg2 = self end1 = other end2 = self.end5 # assert( other.type_ == "end3" ) if (other.type_ is not "end3"): print("Warning: code does not prevent connecting 3prime to 3prime, etc") ## Remove other connections involving these points if end1.connection is not None: print("WARNING: reconnecting {}".format(end1)) end1.connection.delete() if end2.connection is not None: print("WARNING: reconnecting {}".format(end2)) end2.connection.delete() conn = Connection( end1, end2, type_="intrahelical" ) seg1._connect( seg2, conn, in_3prime_direction=True ) def add_crossover(self, nt, other, other_nt, strands_fwd=(True,False), nt_on_5prime=True, type_='sscrossover'): """ Add a crossover between two helices """ ## Validate other, nt, other_nt ## TODO ## TODO: fix direction # c1 = self.nt_pos_to_contour(nt) # # TODOTODO # ## Ensure connections occur at ends, otherwise the structure doesn't make sense # # assert(np.isclose(c1,0) or np.isclose(c1,1)) # assert(np.isclose(nt,0) or np.isclose(nt,self.num_nt-1)) if nt == 0: c1 = 0 elif nt == self.num_nt-1: c1 = 1 else: raise Exception("Crossovers can only be at the ends of an ssDNA segment") loc = self.get_location_at(c1, True) if other_nt == 0: c2 = 0 elif other_nt == other.num_nt-1: c2 = 1 else: c2 = other.nt_pos_to_contour(other_nt) if isinstance(other,SingleStrandedSegment): ## Ensure connections occur at opposing ends assert(np.isclose(other_nt,0) or np.isclose(other_nt,self.num_nt-1)) other_loc = other.get_location_at( c2, True ) # if ("22-2" in (self.name, other.name)): # pdb.set_trace() if nt_on_5prime: self.connect_end3( other_loc ) else: other.connect_end3( self ) else: assert(c2 >= 0 and c2 <= 1) other_loc = other.get_location_at( c2, strands_fwd[1] ) if nt_on_5prime: self._connect(other, Connection( loc, other_loc, type_="sscrossover" ), in_3prime_direction=True ) else: other._connect(self, Connection( other_loc, loc, type_="sscrossover" ), in_3prime_direction=True ) def _get_num_beads(self, contour, max_basepairs_per_bead, max_nucleotides_per_bead): return int(contour*(self.num_nt**2/(self.num_nt+1)) // max_basepairs_per_bead) # return int(contour*self.num_nt // max_nucleotides_per_bead) def _generate_one_bead(self, contour_position, nts): pos = self.contour_to_position(contour_position) b = SegmentParticle( Segment.ssDNA_particle, pos, name="NAS", num_nt=nts, parent=self, contour_position=contour_position ) self._add_bead(b) return b class StrandInSegment(Group): """ Represents a piece of an ssDNA strand within a segment """ def __init__(self, segment, start, end, is_fwd): """ start/end should be provided expressed in nt coordinates, is_fwd tuples """ Group.__init__(self) self.num_nt = 0 # self.sequence = [] self.segment = segment self.start = start self.end = end self.is_fwd = is_fwd nts = np.abs(end-start)+1 self.num_nt = int(round(nts)) assert( np.isclose(self.num_nt,nts) ) segment._add_strand_piece(self) def _nucleotide_ids(self): nt0 = self.start # seg.contour_to_nt_pos(self.start) assert( np.abs(nt0 - round(nt0)) < 1e-5 ) nt0 = int(round(nt0)) assert( (self.end-self.start) >= 0 or not self.is_fwd ) direction = (2*self.is_fwd-1) return range(nt0,nt0 + direction*self.num_nt, direction) def get_sequence(self): """ return 5-to-3 """ # TODOTODO test seg = self.segment if self.is_fwd: return [seg.sequence[nt] for nt in self._nucleotide_ids()] else: return [seqComplement[seg.sequence[nt]] for nt in self._nucleotide_ids()] def get_contour_points(self): c0,c1 = [self.segment.nt_pos_to_contour(p) for p in (self.start,self.end)] return np.linspace(c0,c1,self.num_nt) def get_nucleotide(self, idx): """ idx expressed as nt coordinate within segment """ lo,hi = sorted((self.start,self.end)) if self.is_fwd: idx_in_strand = idx - lo else: idx_in_strand = hi - idx assert( np.isclose( idx_in_strand , int(round(idx_in_strand)) ) ) assert(idx_in_strand >= 0) return self.children[int(round(idx_in_strand))] class Strand(Group): """ Represents an entire ssDNA strand from 5' to 3' as it routes through segments """ def __init__(self, segname = None): Group.__init__(self) self.num_nt = 0 self.children = self.strand_segments = [] self.segname = segname ## TODO disambiguate names of functions def add_dna(self, segment, start, end, is_fwd): """ start/end are given as nt """ if np.abs(start-end) <= 0.9: print( "WARNING: segment constructed with a very small number of nts ({})".format(np.abs(start-end)) ) # import pdb # pdb.set_trace() for s in self.strand_segments: if s.segment == segment and s.is_fwd == is_fwd: # assert( s.start not in (start,end) ) # assert( s.end not in (start,end) ) if s.start in (start,end) or s.end in (start,end): print(" CIRCULAR DNA") import pdb pdb.set_trace() s = StrandInSegment( segment, start, end, is_fwd ) self.add( s ) self.num_nt += s.num_nt def set_sequence(self,sequence): # , set_complement=True): ## validate input assert( len(sequence) >= self.num_nt ) assert( np.all( [i in ('A','T','C','G') for i in sequence] ) ) seq_idx = 0 ## set sequence on each segment for s in self.children: seg = s.segment if seg.sequence is None: seg.sequence = [None for i in range(seg.num_nt)] if s.is_fwd: for nt in s._nucleotide_ids(): seg.sequence[nt] = sequence[seq_idx] seq_idx += 1 else: for nt in s._nucleotide_ids(): seg.sequence[nt] = seqComplement[sequence[seq_idx]] seq_idx += 1 # def get_sequence(self): # sequence = [] # for ss in self.strand_segments: # sequence.extend( ss.get_sequence() ) # assert( len(sequence) >= self.num_nt ) # ret = ["5"+sequence[0]] +\ # sequence[1:-1] +\ # [sequence[-1]+"3"] # assert( len(ret) == self.num_nt ) # return ret def generate_atomic_model(self, scale, first_atomic_index): last = None resid = 1 ## TODO relabel "strand_segment" strand_segment_count = 0 for s in self.strand_segments: strand_segment_count += 1 seg = s.segment contour = s.get_contour_points() # if s.end == s.start: # pdb.set_trace() # assert(s.end != s.start) assert( s.num_nt == 1 or (np.linalg.norm( seg.contour_to_position(contour[-1]) - seg.contour_to_position(contour[0]) ) > 0.1) ) for c,seq in zip(contour,s.get_sequence()): if last is None: seq = "5"+seq if strand_segment_count == len(s.strand_segments) and c == 1: seq = seq+"3" nt = seg._generate_atomic_nucleotide( c, s.is_fwd, seq, scale ) # if s.is_fwd: # else: # nt = seg._generate_atomic_nucleotide( c, s.is_fwd, "A" ) s.add(nt) ## Join last basepairs if last is not None: o3,c3,c4,c2,h3 = [last.atoms_by_name[n] for n in ("O3'","C3'","C4'","C2'","H3'")] p,o5,o1,o2,c5 = [nt.atoms_by_name[n] for n in ("P","O5'","O1P","O2P","C5'")] self.add_bond( o3, p, None ) self.add_angle( c3, o3, p, None ) for x in (o5,o1,o2): self.add_angle( o3, p, x, None ) self.add_dihedral(c3, o3, p, x, None ) for x in (c4,c2,h3): self.add_dihedral(x, c3, o3, p, None ) self.add_dihedral(o3, p, o5, c5, None) nt.__dict__['resid'] = resid resid += 1 last = nt nt._first_atomic_index = first_atomic_index first_atomic_index += len(nt.children) return first_atomic_index def update_atomic_orientations(self,default_orientation): last = None resid = 1 for s in self.strand_segments: seg = s.segment contour = s.get_contour_points() for c,seq,nt in zip(contour,s.get_sequence(),s.children): orientation = seg.contour_to_orientation(c) ## TODO: move this code (?) if orientation is None: axis = seg.contour_to_tangent(c) angleVec = np.array([1,0,0]) if axis.dot(angleVec) > 0.9: angleVec = np.array([0,1,0]) angleVec = angleVec - angleVec.dot(axis)*axis angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(axis,angleVec) orientation = np.array([angleVec,y,axis]).T nt.orientation = orientation.dot(default_orientation) # this one should be correct class SegmentModel(ArbdModel): def __init__(self, segments=[], local_twist=True, escapable_twist=True, max_basepairs_per_bead=7, max_nucleotides_per_bead=4, dimensions=(1000,1000,1000), temperature=291, timestep=50e-6, cutoff=50, decompPeriod=10000, pairlistDistance=None, nonbondedResolution=0,DEBUG=0): self.DEBUG = DEBUG if DEBUG > 0: print("Building ARBD Model") ArbdModel.__init__(self,segments, dimensions, temperature, timestep, cutoff, decompPeriod, pairlistDistance=None, nonbondedResolution=0) # self.max_basepairs_per_bead = max_basepairs_per_bead # dsDNA # self.max_nucleotides_per_bead = max_nucleotides_per_bead # ssDNA self.children = self.segments = segments self._bonded_potential = dict() # cache for bonded potentials self._generate_bead_model( max_basepairs_per_bead, max_nucleotides_per_bead, local_twist, escapable_twist) self.useNonbondedScheme( nbDnaScheme ) self.useTclForces = False self._generate_strands() def get_connections(self,type_=None,exclude=()): """ Find all connections in model, without double-counting """ added=set() ret=[] for s in self.segments: items = [e for e in s.get_connections_and_locations(type_,exclude=exclude) if e[0] not in added] added.update([e[0] for e in items]) ret.extend( list(sorted(items,key=lambda x: x[1].address)) ) return ret def _recursively_get_beads_within_bonds(self,b1,bonds,done=()): ret = [] done = list(done) done.append(b1) if bonds == 0: return [[]] for b2 in b1.intrahelical_neighbors: if b2 in done: continue for tmp in self._recursively_get_beads_within_bonds(b2, bonds-1, done): ret.append( [b2]+tmp ) return ret def _get_intrahelical_beads(self,num=2): ## TODO: add check that this is not called before adding intrahelical_neighbors in _generate_bead_model assert(num >= 2) ret = [] for s in self.segments: for b1 in s.beads: for bead_list in self._recursively_get_beads_within_bonds(b1, num-1): assert(len(bead_list) == num-1) if b1.idx < bead_list[-1].idx: # avoid double-counting ret.append([b1]+bead_list) return ret def _get_intrahelical_angle_beads(self): return self._get_intrahelical_beads(num=3) def _get_potential(self, type_, kSpring, d, max_potential = None): key = (type_, kSpring, d, max_potential) if key not in self._bonded_potential: if type_ == "bond": self._bonded_potential[key] = HarmonicBond(kSpring,d, rRange=(0,1200), max_potential=max_potential) elif type_ == "angle": self._bonded_potential[key] = HarmonicAngle(kSpring,d, max_potential=max_potential) # , resolution = 1, maxForce=0.1) elif type_ == "dihedral": self._bonded_potential[key] = HarmonicDihedral(kSpring,d, max_potential=max_potential) else: raise Exception("Unhandled potential type '%s'" % type_) return self._bonded_potential[key] def get_bond_potential(self, kSpring, d): assert( d > 1 ) return self._get_potential("bond", kSpring, d) def get_angle_potential(self, kSpring, d): return self._get_potential("angle", kSpring, d) def get_dihedral_potential(self, kSpring, d, max_potential=None): while d > 180: d-=360 while d < -180: d+=360 return self._get_potential("dihedral", kSpring, d, max_potential) def _getParent(self, *beads ): if np.all( [b1.parent == b2.parent for b1,b2 in zip(beads[:-1],beads[1:])] ): return beads[0].parent else: return self def _get_twist_spring_constant(self, sep): """ sep in nt """ kT = 0.58622522 # kcal/mol twist_persistence_length = 90 # set semi-arbitrarily as there is a large spread in literature ## = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} ) ## Assume A is small ## int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/ ## Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]] ## Actually, without assumptions I get fitFun below ## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405 ## units "3e-19 erg cm/ 295 k K" "nm" =~ 73 Lp = twist_persistence_length/0.34 fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - np.exp(-sep/Lp) k = opt.leastsq( fitFun, x0=np.exp(-sep/Lp) ) return k[0][0] * 2*kT*0.00030461742 def extend(self, other, copy=True): assert( isinstance(other, SegmentModel) ) if copy: for s in other.segments: self.segments.append(deepcopy(s)) else: for s in other.segments: self.segments.append(s) self._clear_beads() def update(self, segment , copy=False): assert( isinstance(segment, Segment) ) if copy: segment = deepcopy(segment) self.segments.append(segment) self._clear_beads() """ Mapping between different resolution models """ def _clear_beads(self): for s in self.segments: s.clear_all() self.clear_all(keep_children=True) ## Check that it worked assert( len([b for b in self]) == 0 ) locParticles = [] for s in self.segments: for c,A,B in s.get_connections_and_locations(): for l in (A,B): if l.particle is not None: locParticles.append(A.particle) assert( len(locParticles) == 0 ) assert( len([b for s in self.segments for b in s.beads]) == 0 ) def _update_segment_positions(self, bead_coordinates): # TODO: rename to update_splines """ Set new function for each segments functions contour_to_position and contour_to_orientation """ for s in self.segments: # if s.name == "61-1": # pdb.set_trace() cabs = s.get_connections_and_locations("intrahelical") if np.any( [B.particle is None for c,A,B in cabs] ): print( "WARNING: none type found in connection, skipping" ) cabs = [e for e in cabs if e[2].particle is not None] beads = set(s.beads + [A.particle for c,A,B in cabs]) if len(beads) <= 1: pdb.set_trace() ## Add nearby beads for c,A,B in cabs: ## TODOTODO test? filter_fn = lambda x: x is not None and x not in beads bs = list( filter( filter_fn, B.particle.intrahelical_neighbors ) ) beads.update(bs) for i in range(3): bs = list( filter( filter_fn, [n for b in bs for n in b.intrahelical_neighbors] ) ) beads.update(bs) beads = list(beads) ## Skip beads that are None (some locations were not assigned a particle to avoid double-counting) # beads = [b for b in beads if b is not None] beads = list(filter(lambda x: x is not None, beads)) if isinstance(s, DoubleStrandedSegment): beads = list(filter(lambda x: x.type_.name[0] == "D", beads)) contours = [] for b in beads: try: # if s.name == "61-1" and b.parent.name == "60-1": # pdb.set_trace() ## might fail if s is an entire segment away contours.append(b.get_contour_position(s)) except: ## ignore failed attempts beads.remove(b) contours = [b.get_contour_position(s) for b in beads] contours = np.array(contours, dtype=np.float16) # deliberately use low precision contours,ids = np.unique(contours, return_index=True) if np.any( (contours[:-1] - contours[1:])**2 < 1e-8 ): pdb.set_trace() ## TODO: keep closest beads beyond +-1.5 if there are fewer than 2 beads tmp = [] dist = 1 while len(tmp) < 5 and dist < 3: tmp = [ci for ci in zip(contours,ids) if np.abs(ci[0]-0.5) < dist] dist += 0.1 if len(tmp) <= 1: raise Exception("Failed to fit spline into segment {}".format(s)) contours = [ci[0] for ci in tmp] ids = [ci[1] for ci in tmp] # cb = sorted( zip(contours,beads), key=lambda a:a[0] ) # beads = [b for c,b in cb] # contours = [c for c,b in cb] beads = [beads[i] for i in ids] ids = [b.idx for b in beads] if len(beads) <= 1: pdb.set_trace() """ Get positions """ positions = bead_coordinates[ids,:].T ret = interpolate.splprep( positions, u=contours, s=0, k=1, full_output=1 ) tck = ret[0][0] ret = interpolate.splprep( positions, u=contours, s=0, k=1, full_output=1 ) tck2 = ret[0][0] assert( tck[0][0] == tck2[0][0] ) # if len(beads) < 8: # ret = interpolate.splprep( positions, u=contours, s=0, k=1, full_output=1 ) # tck = ret[0][0] # if ret[2] > 0: # pdb.set_trace() # else: # try: # ret = interpolate.splprep( positions, u=contours, s=0, k=3, full_output=1 ) # tck = ret[0][0] # if ret[2] > 0: # pdb.set_trace() # except: # ret = interpolate.splprep( positions, u=contours, s=0, k=1, full_output=1 ) # tck = ret[0][0] # if ret[2] > 0: # pdb.set_trace() s.position_spline_params = tck """ Get twist """ cb = [e for e in zip(contours,beads) if 'orientation_bead' in e[1].__dict__] beads = [b for c,b in cb] contours = [c for c,b in cb] ids = [b.idx for b in beads] # if 'orientation_bead' in beads[0].__dict__: if len(beads) > 3: tangents = s.contour_to_tangent(contours) quats = [] lastq = None for b,t in zip(beads,tangents): o = b.orientation_bead # positions # angleVec = o.position - b.position angleVec = bead_coordinates[o.idx,:] - bead_coordinates[b.idx,:] angleVec = angleVec - angleVec.dot(t)*t angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(t,angleVec) assert( np.abs(np.linalg.norm(y) - 1) < 1e-2 ) q = quaternion_from_matrix( np.array([angleVec,y,t]).T) # q = quaternion_from_matrix( np.array([angleVec,y,t])) if lastq is not None: if q.dot(lastq) < 0: q = -q quats.append( q ) lastq = q # pdb.set_trace() quats = np.array(quats) # tck, u = interpolate.splprep( quats.T, u=contours, s=3, k=3 ) ;# cubic spline not as good tck, u = interpolate.splprep( quats.T, u=contours, s=0, k=1 ) s.quaternion_spline_params = tck def _generate_bead_model(self, max_basepairs_per_bead = 7, max_nucleotides_per_bead = 4, local_twist=False, escapable_twist=True): segments = self.segments for s in segments: s.local_twist = local_twist """ Simplify connections """ # d_nt = dict() # # for s in segments: # d_nt[s] = 1.5/(s.num_nt-1) # for s in segments: # ## replace consecutive crossovers with # cl = sorted( s.get_connections_and_locations("crossover"), key=lambda x: x[1].address ) # last = None # for entry in cl: # c,A,B = entry # if last is not None and \ # (A.address - last[1].address) < d_nt[s]: # same_type = c.type_ == last[0].type_ # same_dest_seg = B.container == last[2].container # if same_type and same_dest_seg: # if np.abs(B.address - last[2].address) < d_nt[B.container]: # ## combine # A.combine = last[1] # B.combine = last[2] # ... # # if last is not None: # # s.bead_locations.append(last) # ... # last = entry # del d_nt """ Generate beads at intrahelical junctions """ if self.DEBUG: print( "Adding intrahelical beads at junctions" ) ## Loop through all connections, generating beads at appropriate locations for c,A,B in self.get_connections("intrahelical"): s1,s2 = [l.container for l in (A,B)] # if s1.name in ("49-3","49-4") and s2.name in ("49-3","49-4"): # if s1.name in ("51-2","51-3") and s2.name in ("51-2","51-3"): # pdb.set_trace() # print("Working on {}".format(c)) ## TODO be more elegant! # if isinstance(s1, DoubleStrandedSegment) and isinstance(s2, DoubleStrandedSegment) and A.on_fwd_strand == False: continue # if isinstance(s1, DoubleStrandedSegment) and isinstance(s2, DoubleStrandedSegment) and A.on_fwd_strand == False: continue ## if A.on_fwd_strand == False: continue # TODO verify this avoids double-counting ## TODO determine whether any logic is needed to prevent double-counting assert( A.particle is None ) assert( B.particle is None ) ## TODO: offload the work here to s1 # TODOTODO a1,a2 = [l.address for l in (A,B)] # a1,a2 = [a - s.nt_pos_to_contour(0.5) if a == 0 else a + s.nt_pos_to_contour(0.5) for a,s in zip((a1,a2),(s1,s2))] for a in (a1,a2): assert( np.isclose(a,0) or np.isclose(a,1) ) # a1,a2 = [a - s.nt_pos_to_contour(0) if a == 0 else a + s.nt_pos_to_contour(0) for a,s in zip((a1,a2),(s1,s2))] ## TODO improve this for combinations of ssDNA and dsDNA (maybe a1/a2 should be calculated differently) b = None if isinstance(s1,DoubleStrandedSegment): b = s1.get_nearest_bead(a1) if b is not None: if np.abs(b.get_nt_position(s1) - s1.contour_to_nt_pos(a1)) > 0.5: b = None if b is None and isinstance(s2,DoubleStrandedSegment): b = s2.get_nearest_bead(a2) if b is not None: if np.abs(b.get_nt_position(s2) - s2.contour_to_nt_pos(a2)) > 0.5: b = None if b is not None and b.parent not in (s1,s2): b = None if b is None: ## need to generate a bead if isinstance(s2,DoubleStrandedSegment): b = s2._generate_one_bead(a2,0) else: b = s1._generate_one_bead(a1,0) A.particle = B.particle = b b.locations.extend([A,B]) # pdb.set_trace() """ Generate beads at other junctions """ for c,A,B in self.get_connections(exclude="intrahelical"): s1,s2 = [l.container for l in (A,B)] if A.particle is not None and B.particle is not None: continue # assert( A.particle is None ) # assert( B.particle is None ) ## TODO: offload the work here to s1/s2 (?) a1,a2 = [l.address for l in (A,B)] if A.particle is None: b = s1.get_nearest_bead(a1) if b is not None and s1.contour_to_nt_pos(np.abs(b.contour_position-a1)) < min(max_basepairs_per_bead, max_nucleotides_per_bead)*0.5: ## combine beads b.update_position( 0.5*(b.contour_position + a1) ) # avg position else: b = s1._generate_one_bead(a1,0) A.particle = b b.locations.append(A) if B.particle is None: b = s2.get_nearest_bead(a2) if b is not None and s2.contour_to_nt_pos(np.abs(b.contour_position-a2)) < min(max_basepairs_per_bead, max_nucleotides_per_bead)*0.5: ## combine beads b.update_position( 0.5*(b.contour_position + a2) ) # avg position else: b = s2._generate_one_bead(a2,0) B.particle = b b.locations.append(B) """ Some tests """ for c,A,B in self.get_connections("intrahelical"): for l in (A,B): if l.particle is None: continue assert( l.particle.parent is not None ) """ Generate beads in between """ if self.DEBUG: print("Generating beads") for s in segments: s._generate_beads( self, max_basepairs_per_bead, max_nucleotides_per_bead ) # """ Combine beads at junctions as needed """ # for c,A,B in self.get_connections(): # ... # ## Debug # all_beads = [b for s in segments for b in s.beads] # positions = np.array([b.position for b in all_beads]) # dists = positions[:,np.newaxis,:] - positions[np.newaxis,:,:] # ids = np.where( np.sum(dists**2,axis=-1) + 0.02**2*np.eye(len(dists)) < 0.02**2 ) # print( ids ) # pdb.set_trace() """ Add intrahelical neighbors at connections """ for c,A,B in self.get_connections("intrahelical"): b1,b2 = [l.particle for l in (A,B)] if b1 is b2: ## already handled by Segment._generate_beads pass else: for b in (b1,b2): assert( b is not None ) b1.make_intrahelical_neighbor(b2) """ Reassign bead types """ if self.DEBUG: print("Assigning bead types") beadtype_s = dict() def _assign_bead_type(bead, num_nt, decimals): num_nt0 = bead.num_nt bead.num_nt = np.around( np.float32(num_nt), decimals=decimals ) key = (bead.type_.name[0].upper(), bead.num_nt) if key in beadtype_s: bead.type_ = beadtype_s[key] else: t = deepcopy(bead.type_) t.__dict__["nts"] = bead.num_nt*2 if t.name[0].upper() in ("D","O") else bead.num_nt t.name = t.name + "%03d" % (t.nts*10**decimals) print( "{} --> {} ({})".format(num_nt0, bead.num_nt, t.name) ) beadtype_s[key] = bead.type_ = t # (cluster_size[c-1]) import scipy.cluster.hierarchy as hcluster beads = [b for s in segments for b in s if b.type_.name[0].upper() in ("D","O")] data = np.array([b.num_nt for b in beads])[:,np.newaxis] order = int(2-np.log10(2*max_basepairs_per_bead)//1) try: clusters = hcluster.fclusterdata(data, float(max_basepairs_per_bead)/500, criterion="distance") cluster_size = [np.mean(data[clusters == i]) for i in np.unique(clusters)] except: clusters = np.arange(len(data))+1 cluster_size = data.flatten() for b,c in zip(beads,clusters): _assign_bead_type(b, cluster_size[c-1], decimals=order) beads = [b for s in segments for b in s if b.type_.name[0].upper() in ("S")] data = np.array([b.num_nt for b in beads])[:,np.newaxis] order = int(2-np.log10(max_nucleotides_per_bead)//1) try: clusters = hcluster.fclusterdata(data, float(max_nucleotides_per_bead)/500, criterion="distance") cluster_size = [np.mean(data[clusters == i]) for i in np.unique(clusters)] except: clusters = np.arange(len(data))+1 cluster_size = data.flatten() for b,c in zip(beads,clusters): _assign_bead_type(b, cluster_size[c-1], decimals=order) # for bead in [b for s in segments for b in s]: # num_nt0 = bead.num_nt # # bead.num_nt = np.around( np.float32(num_nt), decimals=decimals ) # key = (bead.type_.name[0].upper(), bead.num_nt) # if key in beadtype_s: # bead.type_ = beadtype_s[key] # else: # t = deepcopy(bead.type_) # t.__dict__["nts"] = bead.num_nt*2 if t.name[0].upper() in ("D","O") else bead.num_nt # # t.name = t.name + "%03d" % (t.nts*10**decimals) # t.name = t.name + "%.16f" % (t.nts) # print( "{} --> {} ({})".format(num_nt0, bead.num_nt, t.name) ) # beadtype_s[key] = bead.type_ = t """ Update bead indices """ self._countParticleTypes() # probably not needed here self._updateParticleOrder() """ Add intrahelical bond potentials """ if self.DEBUG: print("Adding intrahelical bond potentials") dists = dict() # intrahelical distances built for later use intra_beads = self._get_intrahelical_beads() if self.DEBUG: print(" Adding %d bonds" % len(intra_beads)) for b1,b2 in intra_beads: # assert( not np.isclose( np.linalg.norm(b1.collapsedPosition() - b2.collapsedPosition()), 0 ) ) if np.linalg.norm(b1.collapsedPosition() - b2.collapsedPosition()) < 1: print("WARNING: some beads are very close") parent = self._getParent(b1,b2) ## TODO: could be sligtly smarter about sep sep = 0.5*(b1.num_nt+b2.num_nt) conversion = 0.014393265 # units "pN/AA" kcal_mol/AA^2 if b1.type_.name[0] == "D" and b2.type_.name[0] == "D": elastic_modulus_times_area = 1000 # pN http://markolab.bmbcb.northwestern.edu/marko/Cocco.CRP.02.pdf d = 3.4*sep k = conversion*elastic_modulus_times_area/d else: ## TODO: get better numbers our ssDNA model elastic_modulus_times_area = 800 # pN http://markolab.bmbcb.northwestern.edu/marko/Cocco.CRP.02.pdf d = 5*sep k = conversion*elastic_modulus_times_area/d # print(sep,d,k) if b1 not in dists: dists[b1] = dict() if b2 not in dists: dists[b2] = dict() # dists[b1].append([b2,sep]) # dists[b2].append([b1,sep]) dists[b1][b2] = sep dists[b2][b1] = sep # dists[[b1,b2]] = dists[[b2,b1]] = sep bond = self.get_bond_potential(k,d) parent.add_bond( b1, b2, bond, exclude=True ) # for s in self.segments: # sepsum = 0 # beadsum = 0 # for b1 in s.beads: # beadsum += b1.num_nt # for bead_list in self._recursively_get_beads_within_bonds(b1, 1): # assert(len(bead_list) == 1) # if b1.idx < bead_list[-1].idx: # avoid double-counting # for b2 in bead_list: # if b2.parent == b1.parent: # sepsum += dists[b1][b2] # sepsum += sep # print("Helix {}: bps {}, beads {}, separation {}".format(s.name, s.num_nt, beadsum, sepsum)) """ Add intrahelical angle potentials """ if self.DEBUG: print("Adding intrahelical angle potentials") for b1,b2,b3 in self._get_intrahelical_angle_beads(): ## TODO: could be slightly smarter about sep sep = 0.5*b1.num_nt+b2.num_nt+0.5*b3.num_nt parent = self._getParent(b1,b2,b3) kT = 0.58622522 # kcal/mol if b1.type_.name[0] == "D" and b2.type_.name[0] == "D" and b3.type_.name[0] == "D": ## = exp(-s/Lp) = integrate( x^4 exp(-A x^2) / 2, {x, 0, pi} ) / integrate( x^2 exp(-A x^2), {x, 0, pi} ) ## ~ 1 - 3/4A ## where A = k_spring / (2 kT) k = 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 if local_twist: ## TODO optimize this paramter k *= 0.5 # halve because orientation beads have similar springs angle = self.get_angle_potential(k,180) o1,o2,o3 = [b.orientation_bead for b in (b1,b2,b3)] parent.add_angle( o1, o2, o3, angle ) else: ## TODO: get correct number from ssDNA model k = 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/3))) * 0.00030461742; # kcal_mol/degree^2 angle = self.get_angle_potential(k,180) parent.add_angle( b1, b2, b3, angle ) """ Add intrahelical exclusions """ if self.DEBUG: print("Adding intrahelical exclusions") beads = dists.keys() def _recursively_get_beads_within(b1,d,done=()): ret = [] for b2,sep in dists[b1].items(): if b2 in done: continue if sep < d: ret.append( b2 ) done.append( b2 ) tmp = _recursively_get_beads_within(b2, d-sep, done) if len(tmp) > 0: ret.extend(tmp) return ret exclusions = set() for b1 in beads: exclusions.update( [(b1,b) for b in _recursively_get_beads_within(b1, 20, done=[b1])] ) if self.DEBUG: print("Adding %d exclusions" % len(exclusions)) for b1,b2 in exclusions: parent = self._getParent(b1,b2) parent.add_exclusion( b1, b2 ) """ Twist potentials """ if local_twist: if self.DEBUG: print("Adding twist potentials") for b1 in beads: if "orientation_bead" not in b1.__dict__: continue for b2,sep in dists[b1].items(): if "orientation_bead" not in b2.__dict__: continue if b2.idx < b1.idx: continue # Don't double-count p1,p2 = [b.parent for b in (b1,b2)] o1,o2 = [b.orientation_bead for b in (b1,b2)] parent = self._getParent( b1, b2 ) """ Add heuristic 90 degree potential to keep orientation bead orthogonal """ k = (1.0/2) * 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 pot = self.get_angle_potential(k,90) parent.add_angle(o1,b1,b2, pot) parent.add_angle(b1,b2,o2, pot) ## TODO: improve this twist_per_nt = 0.5 * (p1.twist_per_nt + p2.twist_per_nt) angle = sep*twist_per_nt if angle > 360 or angle < -360: print("WARNING: twist angle out of normal range... proceeding anyway") # raise Exception("The twist between beads is too large") k = self._get_twist_spring_constant(sep) if escapable_twist: pot = self.get_dihedral_potential(k,angle,max_potential=1) else: pot = self.get_dihedral_potential(k,angle) parent.add_dihedral(o1,b1,b2,o2, pot) def k_angle(sep): return 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 def k_xover_angle(sep): return 0.5 * k_angle(sep) def add_local_crossover_orientation_potential(b1,b2,is_parallel=True): u1,u2 = [b.get_intrahelical_above() for b in (b1,b2)] d1,d2 = [b.get_intrahelical_below() for b in (b1,b2)] k = k_xover_angle(sep=1) pot = self.get_angle_potential(k,120) if 'orientation_bead' in b1.__dict__: o = b1.orientation_bead self.add_angle( o,b1,b2, pot ) if 'orientation_bead' in b2.__dict__: o = b2.orientation_bead self.add_angle( b1,b2,o, pot ) if 'orientation_bead' in b1.__dict__: t0 = -90 if A.on_fwd_strand else 90 if not is_parallel: t0 *= -1 o1 = b1.orientation_bead if u2 is not None and isinstance(u2.parent,DoubleStrandedSegment): k = k_xover_angle( dists[b2][u2] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( o1,b1,b2,u2, pot ) elif d2 is not None and isinstance(d2.parent,DoubleStrandedSegment): k = k_xover_angle( dists[b2][d2] ) pot = self.get_dihedral_potential(k,-t0) self.add_dihedral( o1,b1,b2,d2, pot ) if 'orientation_bead' in b2.__dict__: t0 = -90 if B.on_fwd_strand else 90 if not is_parallel: t0 *= -1 o2 = b2.orientation_bead if u1 is not None and isinstance(u1.parent,DoubleStrandedSegment): k = k_xover_angle( dists[b1][u1] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( o2,b2,b1,u1, pot ) elif d1 is not None and isinstance(d1.parent,DoubleStrandedSegment): k = k_xover_angle( dists[b1][d1] ) pot = self.get_dihedral_potential(k,-t0) self.add_dihedral( o2,b2,b1,d1, pot ) """ Add connection potentials """ for c,A,B in self.get_connections("terminal_crossover"): ## TODO: use a better description here b1,b2 = [loc.particle for loc in (c.A,c.B)] # pot = self.get_bond_potential(4,18.5) pot = self.get_bond_potential(4,12) self.add_bond(b1,b2, pot) dotProduct = b1.parent.contour_to_tangent(b1.contour_position).dot( b2.parent.contour_to_tangent(b2.contour_position) ) ## Add potential to provide a particular orinetation if local_twist: add_local_crossover_orientation_potential(b1,b2, is_parallel=dotProduct > 0) """ Add connection potentials """ for c,A,B in self.get_connections("sscrossover"): b1,b2 = [loc.particle for loc in (c.A,c.B)] ## TODO: improve parameters pot = self.get_bond_potential(4,6) self.add_bond(b1,b2, pot) ## Add potentials to provide a sensible orientation ## TODO refine potentials against all-atom simulation data """ u1,u2 = [b.get_intrahelical_above() for b in (b1,b2)] d1,d2 = [b.get_intrahelical_below() for b in (b1,b2)] k_fn = k_angle if isinstance(b1.parent,DoubleStrandedSegment): a,b,c = (d1,b1,b2) if d1.parent is b1.parent else (u1,b1,b2) else: a,b,c = (d2,b2,b1) if d2.parent is b2.parent else (u2,b2,b1) """ # pot = self.get_angle_potential( k_fn(dists[a][b]), 120 ) # a little taller than 90 degrees # self.add_angle( a,b,c, pot ) # o = b.orientation_bead # angle=3 # pot = self.get_angle_potential( 1, 0 ) # a little taller than 90 degrees # self.add_angle( a,b,c, pot ) dotProduct = b1.parent.contour_to_tangent(b1.contour_position).dot( b2.parent.contour_to_tangent(b2.contour_position) ) if local_twist: add_local_crossover_orientation_potential(b1,b2, is_parallel=dotProduct > 0) crossover_bead_pots = set() for c,A,B in self.get_connections("crossover"): b1,b2 = [loc.particle for loc in (A,B)] ## Avoid double-counting if (b1,b2,A.on_fwd_strand,B.on_fwd_strand) in crossover_bead_pots: continue crossover_bead_pots.add((b1,b2,A.on_fwd_strand,B.on_fwd_strand)) crossover_bead_pots.add((b2,b1,B.on_fwd_strand,A.on_fwd_strand)) pot = self.get_bond_potential(4,18.5) self.add_bond(b1,b2, pot) ## Get beads above and below u1,u2 = [b.get_intrahelical_above() for b in (b1,b2)] d1,d2 = [b.get_intrahelical_below() for b in (b1,b2)] dotProduct = b1.parent.contour_to_tangent(b1.contour_position).dot( b2.parent.contour_to_tangent(b2.contour_position) ) if dotProduct < 0: tmp = d2 d2 = u2 u2 = tmp a = None if u1 is not None and u2 is not None: t0 = 0 a,b,c,d = (u1,b1,b2,u2) elif d1 is not None and d2 is not None: t0 = 0 a,b,c,d = (d1,b1,b2,d2 ) elif d1 is not None and u2 is not None: t0 = 180 a,b,c,d = (d1,b1,b2,u2) elif u1 is not None and d2 is not None: t0 = 180 a,b,c,d = (u1,b1,b2,d2) if a is not None: k = k_xover_angle( dists[b][a]+dists[c][d] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( a,b,c,d, pot ) if local_twist: add_local_crossover_orientation_potential(b1,b2, is_parallel=dotProduct > 0) ## TODOTODO check that this works for crossovers in self.get_consecutive_crossovers(): if local_twist: break ## filter crossovers new_cl = [] lastParticle = None for cl in crossovers: c,A,B,d = cl if A.particle is not lastParticle: new_cl.append(cl) lastParticle = A.particle crossovers = new_cl for i in range(len(crossovers)-2): c1,A1,B1,dir1 = crossovers[i] c2,A2,B2,dir2 = crossovers[i+1] s1,s2 = [l.container for l in (A1,A2)] sep = A1.particle.get_nt_position(s1) - A2.particle.get_nt_position(s2) sep = np.abs(sep) n1,n2,n3,n4 = (B1.particle, A1.particle, A2.particle, B2.particle) """ = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} ) Assume A is small int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/ Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]] Actually, without assumptions I get fitFun below """ ## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405 ## units "3e-19 erg cm/ 295 k K" "nm" =~ 73 Lp = s1.twist_persistence_length/0.34 # set semi-arbitrarily as there is a large spread in literature fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - np.exp(-sep/Lp) k = opt.leastsq( fitFun, x0=np.exp(-sep/Lp) ) k = k[0][0] * 2*kT*0.00030461742 t0 = sep*s1.twist_per_nt # TODO weighted avg between s1 and s2 # pdb.set_trace() if A1.on_fwd_strand: t0 -= 120 if dir1 != dir2: A2_on_fwd = not A2.on_fwd_strand else: A2_on_fwd = A2.on_fwd_strand if A2_on_fwd: t0 += 120 # t0 = (t0 % 360 # if n2.idx == 0: # print( n1.idx,n2.idx,n3.idx,n4.idx,k,t0,sep ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( n1,n2,n3,n4, pot ) # ## remove duplicate potentials; ## TODO ensure that they aren't added twice in the first place? # self.remove_duplicate_terms() def walk_through_helices(segment, direction=1, processed_segments=None): """ First and last segment should be same for circular helices """ assert( direction in (1,-1) ) if processed_segments == None: processed_segments = set() def segment_is_new_helix(s): return isinstance(s,DoubleStrandedSegment) and s not in processed_segments new_s = None s = segment ## iterate intrahelically connected dsDNA segments while segment_is_new_helix(s): conn_locs = s.get_contour_sorted_connections_and_locations("intrahelical")[::direction] processed_segments.add(new_s) new_s = None new_dir = None for i in range(len(conn_locs)): c,A,B = conn_locs[i] ## TODO: handle change of direction # TODOTODO address = 1*(direction==-1) if A.address == address and segment_is_new_helix(B.container): new_s = B.container assert(B.address in (0,1)) new_dir = 2*(B.address == 0) - 1 break yield s,direction s = new_s # will break if None direction = new_dir # if new_s is None: # break # else: # s = new_s # yield s ## return s def get_consecutive_crossovers(self): ## TODOTODO TEST crossovers = [] processed_segments = set() for s1 in self.segments: if not isinstance(s1,DoubleStrandedSegment): continue if s1 in processed_segments: continue s0,d0 = list(SegmentModel.walk_through_helices(s1,direction=-1))[-1] # s,direction = get_start_of_helices() tmp = [] for s,d in SegmentModel.walk_through_helices(s0,-d0): if s == s0 and len(tmp) > 0: ## end of circular helix, only add first crossover cl_list = s.get_contour_sorted_connections_and_locations("crossover") if len(cl_list) > 0: tmp.append( cl_list[::d][0] + [d] ) else: tmp.extend( [cl + [d] for cl in s.get_contour_sorted_connections_and_locations("crossover")[::d]] ) processed_segments.add(s) crossovers.append(tmp) return crossovers def set_sequence(self, sequence, force=True): if force: self.strands[0].set_sequence(sequence) else: try: self.strands[0].set_sequence(sequence) except: ... for s in self.segments: s.randomize_unset_sequence() def _generate_strands(self): self.strands = strands = [] """ Ensure unconnected ends have 5prime Location objects """ for seg in self.segments: ## TODO move into Segment calls five_prime_locs = sum([seg.get_locations(s) for s in ("5prime","crossover","terminal_crossover")],[]) three_prime_locs = sum([seg.get_locations(s) for s in ("3prime","crossover","terminal_crossover")],[]) def is_start_5prime(l): return l.get_nt_pos() < 1 and l.on_fwd_strand def is_end_5prime(l): return l.get_nt_pos() > seg.num_nt-2 and not l.on_fwd_strand def is_start_3prime(l): return l.get_nt_pos() < 1 and not l.on_fwd_strand def is_end_3prime(l): return l.get_nt_pos() > seg.num_nt-2 and l.on_fwd_strand if seg.start5.connection is None: if len(list(filter( is_start_5prime, five_prime_locs ))) == 0: seg.add_5prime(0) # TODO ensure this is the same place if 'end5' in seg.__dict__ and seg.end5.connection is None: if len(list(filter( is_end_5prime, five_prime_locs ))) == 0: seg.add_5prime(seg.num_nt-1,on_fwd_strand=False) if 'start3' in seg.__dict__ and seg.start3.connection is None: if len(list(filter( is_start_3prime, three_prime_locs ))) == 0: seg.add_3prime(0,on_fwd_strand=False) if seg.end3.connection is None: if len(list(filter( is_end_3prime, three_prime_locs ))) == 0: seg.add_3prime(seg.num_nt-1) # print( [(l,l.get_connected_location()) for l in seg.locations] ) # addresses = np.array([l.address for l in seg.get_locations("5prime")]) # if not np.any( addresses == 0 ): # ## check if end is connected # for c,l,B in self.get_connections_and_locations(): # if c[0] """ Build strands from connectivity of helices """ def _recursively_build_strand(strand, segment, pos, is_fwd, mycounter=0, move_at_least=0.5): seg = segment history = [] while True: mycounter+=1 if mycounter > 10000: import pdb pdb.set_trace() #if seg.name == "22-1" and pos > 140: # if seg.name == "22-2": # import pdb # pdb.set_trace() end_pos, next_seg, next_pos, next_dir, move_at_least = seg.get_strand_segment(pos, is_fwd, move_at_least) strand.add_dna(seg, pos, end_pos, is_fwd) if next_seg is None: return else: history.append((seg,pos,is_fwd)) seg,pos,is_fwd = (next_seg, next_pos, next_dir) for seg in self.segments: locs = seg.get_5prime_locations() if locs is None: continue # for pos, is_fwd in locs: for l in locs: # print("Tracing",l) # TODOTODO pos = seg.contour_to_nt_pos(l.address, round_nt=True) is_fwd = l.on_fwd_strand s = Strand() _recursively_build_strand(s, seg, pos, is_fwd) # print("{} {}".format(seg.name,s.num_nt)) strands.append(s) self.strands = sorted(strands, key=lambda s:s.num_nt)[::-1] # or something ## relabel segname counter = 0 for s in self.strands: if s.segname is None: s.segname = "D%03d" % counter counter += 1 def _assign_basepairs(self): ## Assign basepairs for seg in self.segments: if isinstance(seg, DoubleStrandedSegment): strands1 = seg.strand_pieces['fwd'] # already sorted strands2 = seg.strand_pieces['rev'] nts1 = [nt for s in strands1 for nt in s.children] nts2 = [nt for s in strands2 for nt in s.children[::-1]] assert(len(nts1) == len(nts2)) for nt1,nt2 in zip(nts1,nts2): ## TODO weakref nt1.basepair = nt2 nt2.basepair = nt1 def _update_orientations(self,orientation): for s in self.strands: s.update_atomic_orientations(orientation) def _write_atomic_ENM(self, prefix, lattice_type=None): ## TODO: ensure atomic model was generated already if lattice_type is None: lattice_type = self.lattice_type if lattice_type == "square": enmTemplate = enmTemplateSQ elif lattice_type == "honeycomb": enmTemplate = enmTemplateHC else: raise Exception("Lattice type '%s' not supported" % self.latticeType) ## TODO: allow ENM to be created without first building atomic model noStackPrime = 0 noBasepair = 0 with open("%s.exb" % prefix,'w') as fh: # natoms=0 for seg in self.segments: ## Continue unless dsDNA if not isinstance(seg,DoubleStrandedSegment): continue for strand_piece in seg.strand_pieces['fwd'] + seg.strand_pieces['rev']: for nt1 in strand_piece.children: other = [] nt2 = nt1.basepair if strand_piece.is_fwd: other.append((nt2,'pair')) nt2 = nt2.get_intrahelical_above() if nt2 is not None and strand_piece.is_fwd: ## TODO: check if this already exists other.append((nt2,'paircross')) nt2 = nt1.get_intrahelical_above() if nt2 is not None: other.append((nt2,'stack')) nt2 = nt2.basepair if nt2 is not None and strand_piece.is_fwd: other.append((nt2,'cross')) for nt2,key in other: """ if np.linalg.norm(nt2.position-nt1.position) > 7: import pdb pdb.set_trace() """ key = ','.join((key,nt1.sequence[0],nt2.sequence[0])) for n1, n2, d in enmTemplate[key]: d = float(d) k = 0.1 if lattice_type == 'honeycomb': correctionKey = ','.join((key,n1,n2)) assert(correctionKey in enmCorrectionsHC) dk,dr = enmCorrectionsHC[correctionKey] k = float(dk) d += float(dr) i = nt1._get_atomic_index(name=n1) j = nt2._get_atomic_index(name=n2) fh.write("bond %d %d %f %.2f\n" % (i,j,k,d)) # print("NO STACKS found for:", noStackPrime) # print("NO BASEPAIRS found for:", noBasepair) ## Loop dsDNA regions push_bonds = [] processed_segs = set() ## TODO possibly merge some of this code with SegmentModel.get_consecutive_crossovers() for segI in self.segments: # TODOTODO: generalize through some abstract intrahelical interface that effectively joins "segments", for now interhelical bonds that cross intrahelically-connected segments are ignored if not isinstance(segI,DoubleStrandedSegment): continue ## Loop over dsDNA regions connected by crossovers conn_locs = segI.get_contour_sorted_connections_and_locations("crossover") other_segs = list(set([B.container for c,A,B in conn_locs])) for segJ in other_segs: if (segI,segJ) in processed_segs: continue processed_segs.add((segI,segJ)) processed_segs.add((segJ,segI)) ## TODO perhaps handle ends that are not between crossovers ## Loop over ordered pairs of crossovers between the two cls = filter(lambda x: x[-1].container == segJ, conn_locs) cls = sorted( cls, key=lambda x: x[1].get_nt_pos() ) for cl1,cl2 in zip(cls[:-1],cls[1:]): c1,A1,B1 = cl1 c2,A2,B2 = cl2 ntsI1,ntsI2 = [segI.contour_to_nt_pos(A.address) for A in (A1,A2)] ntsJ1,ntsJ2 = [segJ.contour_to_nt_pos(B.address) for B in (B1,B2)] ntsI = ntsI2-ntsI1+1 ntsJ = ntsJ2-ntsJ1+1 assert( np.isclose( ntsI, int(round(ntsI)) ) ) assert( np.isclose( ntsJ, int(round(ntsJ)) ) ) ntsI,ntsJ = [int(round(i)) for i in (ntsI,ntsJ)] ## Find if dsDNA "segments" are pointing in same direction ## could move this block out of the loop tangentA = segI.contour_to_tangent(A1.address) tangentB = segJ.contour_to_tangent(B1.address) dot1 = tangentA.dot(tangentB) tangentA = segI.contour_to_tangent(A2.address) tangentB = segJ.contour_to_tangent(B2.address) dot2 = tangentA.dot(tangentB) if dot1 > 0.5 and dot2 > 0.5: ... elif dot1 < -0.5 and dot2 < -0.5: ## TODO, reverse ... print("Warning: {} and {} are on antiparallel helices (not yet implemented)... skipping".format(A1,B1)) continue else: print("Warning: {} and {} are on helices that do not point in similar direction... skipping".format(A1,B1)) continue ## Go through each nucleotide between the two for ijmin in range(min(ntsI,ntsJ)): i=j=ijmin if ntsI < ntsJ: j = int(round(float(ntsJ*i)/ntsI)) elif ntsJ < ntsI: i = int(round(float(ntsI*j)/ntsJ)) ntI_idx = int(round(ntsI1+i)) ntJ_idx = int(round(ntsJ1+j)) ## Skip nucleotides that are too close to crossovers if i < 11 or j < 11: continue if ntsI2-ntI_idx < 11 or ntsJ2-ntJ_idx < 11: continue ## Find phosphates at ntI/ntJ for direction in [True,False]: try: i = segI._get_atomic_nucleotide(ntI_idx, direction)._get_atomic_index(name="P") j = segJ._get_atomic_nucleotide(ntJ_idx, direction)._get_atomic_index(name="P") push_bonds.append((i,j)) except: # print("WARNING: could not find 'P' atom in {}:{} or {}:{}".format( segI, ntI_idx, segJ, ntJ_idx )) ... print("PUSH BONDS:", len(push_bonds)) if not self.useTclForces: with open("%s.exb" % prefix, 'a') as fh: for i,j in push_bonds: fh.write("bond %d %d %f %.2f\n" % (i,j,1.0,31)) else: flat_push_bonds = list(sum(push_bonds)) atomList = list(set( flat_push_bonds )) with open("%s.forces.tcl" % prefix,'w') as fh: fh.write("set atomList {%s}\n\n" % " ".join([str(x-1) for x in atomList]) ) fh.write("set bonds {%s}\n" % " ".join([str(x-1) for x in flat_push_bonds]) ) fh.write(""" foreach atom $atomList { addatom $atom } proc calcforces {} { global atomList bonds loadcoords rv foreach i $atomList { set force($i) {0 0 0} } foreach {i j} $bonds { set rvec [vecsub $rv($j) $rv($i)] # lassign $rvec x y z # set r [expr {sqrt($x*$x+$y*$y+$z*$z)}] set r [getbond $rv($j) $rv($i)] set f [expr {2*($r-31.0)/$r}] vecadd $force($i) [vecscale $f $rvec] vecadd $force($j) [vecscale [expr {-1.0*$f}] $rvec] } foreach i $atomList { addforce $i $force($i) } } """) def set_dimensions_from_structure( self, padding_factor=1.5, isotropic=False ): positions = [] for s in self.segments: positions.append(s.contour_to_position(0)) positions.append(s.contour_to_position(0.5)) positions.append(s.contour_to_position(1)) positions = np.array(positions) dx,dy,dz = [(np.max(positions[:,i])-np.min(positions[:,i])+30)*padding_factor for i in range(3)] if isotropic: dx = dy = dz = max((dx,dy,dz)) self.dimensions = [dx,dy,dz] def _generate_atomic_model(self, scale=1): self.children = self.strands first_atomic_index = 0 for s in self.strands: first_atomic_index = s.generate_atomic_model(scale,first_atomic_index) self._assign_basepairs() return ## Angle optimization angles = np.linspace(-180,180,180) score = [] for a in angles: o = rotationAboutAxis([0,0,1], a) sum2 = count = 0 for s in self.strands: s.update_atomic_orientations(o) for s1,s2 in zip(s.strand_segments[:-1],s.strand_segments[1:]): nt1 = s1.children[-1] nt2 = s2.children[0] o3 = nt1.atoms_by_name["O3'"] p = nt2.atoms_by_name["P"] sum2 += np.sum((p.collapsedPosition()-o3.collapsedPosition())**2) count += 1 score.append(sum2/count) print(angles[np.argmin(score)]) print(score)