import pdb import numpy as np import random from arbdmodel import PointParticle, ParticleType, Group, ArbdModel from coords import rotationAboutAxis, quaternion_from_matrix, quaternion_to_matrix from nonbonded import * from copy import copy, deepcopy from nbPot import nbDnaScheme from scipy.special import erf import scipy.optimize as opt from scipy import interpolate from CanonicalNucleotideAtoms import canonicalNtFwd, canonicalNtRev, seqComplement from CanonicalNucleotideAtoms import enmTemplateHC, enmTemplateSQ, enmCorrectionsHC # import pdb """ TODO: + fix handling of crossovers for atomic representation + map to atomic representation + add nicks - transform ssDNA nucleotides - shrink ssDNA - shrink dsDNA backbone + make orientation continuous - sequence - handle circular dna + ensure crossover bead potentials aren't applied twice + remove performance bottlenecks - test for large systems - assign sequence - ENM - rework Location class - remove recursive calls - document - add unit test of helices connected to themselves """ class ParticleNotConnectedError(Exception): pass class Location(): """ Site for connection within an object """ def __init__(self, container, address, type_, on_fwd_strand = True): ## TODO: remove cyclic references(?) self.container = container self.address = address # represents position along contour length in segment # assert( type_ in ("end3","end5") ) # TODO remove or make conditional self.on_fwd_strand = on_fwd_strand self.type_ = type_ self.particle = None self.connection = None self.is_3prime_side_of_connection = None self.prev_in_strand = None self.next_in_strand = None self.combine = None # some locations might be combined in bead model def get_connected_location(self): if self.connection is None: return None else: return self.connection.other(self) def set_connection(self, connection, is_3prime_side_of_connection): self.connection = connection # TODO weakref? self.is_3prime_side_of_connection = is_3prime_side_of_connection def __repr__(self): if self.on_fwd_strand: on_fwd = "on_fwd_strand" else: on_fwd = "on_rev_strand" return "".format( self.container.name, self.type_, self.address, self.on_fwd_strand) class Connection(): """ Abstract base class for connection between two elements """ def __init__(self, A, B, type_ = None): assert( isinstance(A,Location) ) assert( isinstance(B,Location) ) self.A = A self.B = B self.type_ = type_ def other(self, location): if location is self.A: return self.B elif location is self.B: return self.A else: raise Exception("OutOfBoundsError") def __repr__(self): return "".format( self.A, self.type_, self.B ) # class ConnectableElement(Transformable): class ConnectableElement(): """ Abstract base class """ ## TODO: eliminate mutable default arguments def __init__(self, connection_locations=[], connections=[]): ## TODO decide on names self.locations = self.connection_locations = connection_locations self.connections = connections def get_locations(self, type_=None, exclude=[]): locs = [l for l in self.connection_locations if (type_ is None or l.type_ == type_) and l.type_ not in exclude] counter = dict() for l in locs: if l in counter: counter[l] += 1 else: counter[l] = 1 assert( np.all( [counter[l] == 1 for l in locs] ) ) return locs def get_location_at(self, address, on_fwd_strand=True, new_type="crossover"): loc = None if (self.num_nts == 1): # import pdb # pdb.set_trace() ## Assumes that intrahelical connections have been made before crossovers for l in self.locations: if l.on_fwd_strand == on_fwd_strand and l.connection is None: assert(loc is None) loc = l # assert( loc is not None ) else: for l in self.locations: if l.address == address and l.on_fwd_strand == on_fwd_strand: assert(loc is None) loc = l if loc is None: loc = Location( self, address=address, type_=new_type, on_fwd_strand=on_fwd_strand ) return loc def get_connections_and_locations(self, connection_type=None, exclude=[]): """ Returns a list with each entry of the form: connection, location_in_self, location_in_other """ type_ = connection_type ret = [] for c in self.connections: if (type_ is None or c.type_ == type_) and c.type_ not in exclude: if c.A.container is self: ret.append( [c, c.A, c.B] ) elif c.B.container is self: ret.append( [c, c.B, c.A] ) else: import pdb pdb.set_trace() raise Exception("Object contains connection that fails to refer to object") return ret def _connect(self, other, connection, in_3prime_direction=None): ## TODO fix circular references A,B = [connection.A, connection.B] if in_3prime_direction is not None: A.is_3prime_side_of_connection = not in_3prime_direction B.is_3prime_side_of_connection = in_3prime_direction A.connection = B.connection = connection self.connections.append(connection) other.connections.append(connection) l = A.container.locations if A not in l: l.append(A) l = B.container.locations if B not in l: l.append(B) # def _find_connections(self, loc): # return [c for c in self.connections if c.A == loc or c.B == loc] class SegmentParticle(PointParticle): def __init__(self, type_, position, name="A", segname="A", **kwargs): self.name = name self.contour_position = None PointParticle.__init__(self, type_, position, name=name, segname=segname, **kwargs) self.intrahelical_neighbors = [] self.other_neighbors = [] self.locations = [] def get_intrahelical_above(self): """ Returns bead directly above self """ assert( len(self.intrahelical_neighbors) <= 2 ) for b in self.intrahelical_neighbors: if b.get_contour_position(self.parent) > self.contour_position: return b def get_intrahelical_below(self): """ Returns bead directly below self """ assert( len(self.intrahelical_neighbors) <= 2 ) for b in self.intrahelical_neighbors: if b.get_contour_position(self.parent) < self.contour_position: return b def _neighbor_should_be_added(self,b): c1 = self.contour_position c2 = b.get_contour_position(self.parent) if c2 < c1: b0 = self.get_intrahelical_below() else: b0 = self.get_intrahelical_above() if b0 is not None: c0 = b0.get_contour_position(self.parent) if np.abs(c2-c1) < np.abs(c0-c1): ## remove b0 self.intrahelical_neighbors.remove(b0) b0.intrahelical_neighbors.remove(self) return True else: return False return True def make_intrahelical_neighbor(self,b): add1 = self._neighbor_should_be_added(b) add2 = b._neighbor_should_be_added(self) if add1 and add2: assert(len(b.intrahelical_neighbors) <= 1) assert(len(self.intrahelical_neighbors) <= 1) self.intrahelical_neighbors.append(b) b.intrahelical_neighbors.append(self) # def get_nt_position(self,seg): # if seg == self.parent: # return seg.contour_to_nt_pos(self.contour_position) # else: # cl = [e for e in self.parent.get_connections_and_locations() if e[2].container is seg] # dc = [(self.contour_position - A.address)**2 for c,A,B in cl] # if len(dc) == 0: # import pdb # pdb.set_trace() # i = np.argmin(dc) # c,A,B = cl[i] # ## TODO: generalize, removing np.abs and conditional # delta_nt = np.abs( A.container.contour_to_nt_pos(self.contour_position - A.address) ) # B_nt_pos = seg.contour_to_nt_pos(B.address) # if B.address < 0.5: # return B_nt_pos-delta_nt # else: # return B_nt_pos+delta_nt def get_nt_position(self,seg): if seg == self.parent: return seg.contour_to_nt_pos(self.contour_position) else: def get_nt_pos(contour1, seg1, seg2): cl = [e for e in seg1.get_connections_and_locations() if e[2].container is seg2] dc = [(contour1 - A.address)**2 for c,A,B in cl] if len(dc) == 0: return None i = np.argmin(dc) c,A,B = cl[i] ## TODO: generalize, removing np.abs and conditional delta_nt = np.abs( seg1.contour_to_nt_pos(contour1 - A.address) ) B_nt_pos = seg2.contour_to_nt_pos(B.address) if B.address < 0.5: return B_nt_pos-delta_nt else: return B_nt_pos+delta_nt pos = get_nt_pos(self.contour_position, self.parent, seg) if pos is None: ## Particle is not directly connected visited_segs = set(seg) positions = [] for l in self.locations: if l.container == self.parent: continue pos0 = get_nt_pos(self.contour_position, self.parent, l.container) assert(pos0 is not None) pos0 = l.container.nt_pos_to_contour(pos0) pos = get_nt_pos( pos0, l.container, seg ) if pos is not None: positions.append( pos ) assert( len(positions) > 0 ) if len(positions) > 1: import pdb pdb.set_trace() pos = positions[0] return pos def get_contour_position(self,seg): if seg == self.parent: return self.contour_position else: nt_pos = self.get_nt_position(seg) return seg.nt_pos_to_contour(nt_pos) ## TODO break this class into smaller, better encapsulated pieces class Segment(ConnectableElement, Group): """ Base class that describes a segment of DNA. When built from cadnano models, should not span helices """ """Define basic particle types""" dsDNA_particle = ParticleType("D", diffusivity = 43.5, mass = 300, radius = 3, ) orientation_particle = ParticleType("O", diffusivity = 100, mass = 300, radius = 1, ) # orientation_bond = HarmonicBond(10,2) orientation_bond = HarmonicBond(30,1.5, rRange = (0,500) ) ssDNA_particle = ParticleType("S", diffusivity = 43.5, mass = 150, radius = 3, ) def __init__(self, name, num_nts, start_position = np.array((0,0,0)), end_position = None, segment_model = None): Group.__init__(self, name, children=[]) ConnectableElement.__init__(self, connection_locations=[], connections=[]) self.resname = name self.start_orientation = None self.twist_per_nt = 0 self.beads = [c for c in self.children] # self.beads will not contain orientation beads self._bead_model_generation = 0 # TODO: remove? self.segment_model = segment_model # TODO: remove? self.num_nts = int(num_nts) if end_position is None: end_position = np.array((0,0,self.distance_per_nt*num_nts)) + start_position self.start_position = start_position self.end_position = end_position ## Set up interpolation for positions a = np.array([self.start_position,self.end_position]).T tck, u = interpolate.splprep( a, u=[0,1], s=0, k=1) self.position_spline_params = tck self.sequence = None def clear_all(self): Group.clear_all(self) # TODO: use super? self.beads = [] for c,loc,other in self.get_connections_and_locations(): loc.particle = None def contour_to_nt_pos(self, contour_pos, round_nt=False): nt = contour_pos*(self.num_nts) - 0.5 if round_nt: assert( np.isclose(np.around(nt),nt) ) nt = np.around(nt) return nt def nt_pos_to_contour(self,nt_pos): return (nt_pos+0.5)/(self.num_nts) def contour_to_position(self,s): p = interpolate.splev( s, self.position_spline_params ) if len(p) > 1: p = np.array(p).T return p def contour_to_tangent(self,s): t = interpolate.splev( s, self.position_spline_params, der=1 ) t = (t / np.linalg.norm(t,axis=0)) return t.T def contour_to_orientation(self,s): assert( isinstance(s,float) or isinstance(s,int) or len(s) == 1 ) # TODO make vectorized version orientation = None if self.start_orientation is not None: # axis = self.start_orientation.dot( np.array((0,0,1)) ) if self.quaternion_spline_params is None: axis = self.contour_to_tangent(s) orientation = rotationAboutAxis( axis, self.twist_per_nt*self.contour_to_nt_pos(s), normalizeAxis=True ) else: q = interpolate.splev( s, self.quaternion_spline_params ) if len(q) > 1: q = np.array(q).T # TODO: is this needed? orientation = quaternion_to_matrix(q) return orientation def get_contour_sorted_connections_and_locations(self,type_): sort_fn = lambda c: c[1].address cl = self.get_connections_and_locations(type_) return sorted(cl, key=sort_fn) def randomize_unset_sequence(self): bases = list(seqComplement.keys()) # bases = ['T'] ## FOR DEBUG if self.sequence is None: self.sequence = [random.choice(bases) for i in range(self.num_nts)] else: assert(len(self.sequence) == self.num_nts) # TODO move for i in range(len(self.sequence)): if self.sequence[i] is None: self.sequence[i] = random.choice(bases) def _get_num_beads(self, max_basepairs_per_bead, max_nucleotides_per_bead ): raise NotImplementedError def _generate_one_bead(self, contour_position, nts): raise NotImplementedError def _generate_atomic_nucleotide(self, contour_position, is_fwd, seq, scale): """ Seq should include modifications like 5T, T3 Tsinglet; direction matters too """ # print("Generating nucleotide at {}".format(contour_position)) pos = self.contour_to_position(contour_position) if self.local_twist: orientation = self.contour_to_orientation(contour_position) ## TODO: move this code (?) if orientation is None: axis = self.contour_to_tangent(contour_position) angleVec = np.array([1,0,0]) if axis.dot(angleVec) > 0.9: angleVec = np.array([0,1,0]) angleVec = angleVec - angleVec.dot(axis)*axis angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(axis,angleVec) orientation = np.array([angleVec,y,axis]).T ## TODO: improve placement of ssDNA # rot = rotationAboutAxis( axis, contour_position*self.twist_per_nt*self.num_nts, normalizeAxis=True ) # orientation = rot.dot(orientation) else: orientation = orientation else: raise NotImplementedError # key = self.sequence # if self.ntAt5prime is None and self.ntAt3prime is not None: key = "5"+key # if self.ntAt5prime is not None and self.ntAt3prime is None: key = key+"3" # if self.ntAt5prime is None and self.ntAt3prime is None: key = key+"singlet" key = seq if not is_fwd: nt_dict = canonicalNtFwd else: nt_dict = canonicalNtRev atoms = nt_dict[ key ].generate() # TODO: clone? atoms.orientation = orientation.dot(atoms.orientation) if isinstance(self, SingleStrandedSegment): if scale is not None and scale != 1: for a in atoms: a.position = scale*a.position a.beta = 0 atoms.position = pos - atoms.atoms_by_name["C1'"].collapsed_position() else: if scale is not None and scale != 1: if atoms.sequence in ("A","G"): r0 = atoms.atoms_by_name["N9"].position else: r0 = atoms.atoms_by_name["N1"].position for a in atoms: if a.name[-1] in ("'","P","T"): a.position = scale*(a.position-r0) + r0 a.beta = 0 atoms.position = pos return atoms def add_location(self, nt, type_, on_fwd_strand=True): ## Create location if needed, add to segment c = self.nt_pos_to_contour(nt) assert(c >= 0 and c <= 1) # TODO? loc = self.Location( address=c, type_=type_, on_fwd_strand=is_fwd ) loc = Location( self, address=c, type_=type_, on_fwd_strand=on_fwd_strand ) self.locations.append(loc) ## TODO? Replace with abstract strand-based model? def add_5prime(self, nt, on_fwd_strand=True): self.add_location(nt,"5prime",on_fwd_strand) def add_3prime(self, nt, on_fwd_strand=True): self.add_location(nt,"3prime",on_fwd_strand) def get_3prime_locations(self): return self.get_locations("3prime") def get_5prime_locations(self): ## TODO? ensure that data is consistent before _build_model calls return self.get_locations("5prime") def iterate_connections_and_locations(self, reverse=False): ## connections to other segments cl = self.get_contour_sorted_connections_and_locations() if reverse: cl = cl[::-1] for c in cl: yield c ## TODO rename def get_strand_segment(self, nt_pos, is_fwd, move_at_least=0.5): """ Walks through locations, checking for crossovers """ # if self.name in ("6-1","1-1"): # import pdb # pdb.set_trace() move_at_least = 0 ## Iterate through locations # locations = sorted(self.locations, key=lambda l:(l.address,not l.on_fwd_strand), reverse=(not is_fwd)) locations = sorted(self.locations, key=lambda l:(l.address,not l.on_fwd_strand), reverse=(not is_fwd)) # print(locations) for l in locations: # TODOTODO probably okay if l.address == 0: pos = 0.0 elif l.address == 1: pos = self.num_nts-1 else: pos = self.contour_to_nt_pos(l.address, round_nt=True) ## DEBUG # import pdb # pdb.set_trace() ## Skip locations encountered before our strand # tol = 0.1 # if is_fwd: # if pos-nt_pos <= tol: continue # elif nt_pos-pos <= tol: continue if (pos-nt_pos)*(2*is_fwd-1) < move_at_least: continue ## TODO: remove move_at_least if np.isclose(pos,nt_pos): if l.is_3prime_side_of_connection: continue ## Stop if we found the 3prime end if l.on_fwd_strand == is_fwd and l.type_ == "3prime": print(" found end at",l) return pos, None, None, None, None ## Check location connections c = l.connection if c is None: continue B = c.other(l) ## Found a location on the same strand? if l.on_fwd_strand == is_fwd: print(" passing through",l) print("from {}, connection {} to {}".format(nt_pos,l,B)) try: Bpos = B.container.contour_to_nt_pos(B.address, round_nt=True) except: if B.address == 0: Bpos = 0 elif B.address == 1: Bpos = B.container.num_nts-1 else: raise return pos, B.container, Bpos, B.on_fwd_strand, 0.5 ## Stop at other strand crossovers so basepairs line up elif c.type_ == "crossover": if nt_pos == pos: continue print(" pausing at",l) return pos, l.container, pos+(2*is_fwd-1), is_fwd, 0 import pdb pdb.set_trace() raise Exception("Shouldn't be here") # print("Shouldn't be here") ## Made it to the end of the segment without finding a connection return 1*is_fwd, None, None, None def get_nearest_bead(self, contour_position): if len(self.beads) < 1: return None cs = np.array([b.contour_position for b in self.beads]) # TODO: cache # TODO: include beads in connections? i = np.argmin((cs - contour_position)**2) return self.beads[i] def get_all_consecutive_beads(self, number): assert(number >= 1) ## Assume that consecutive beads in self.beads are bonded ret = [] for i in range(len(self.beads)-number+1): tmp = [self.beads[i+j] for j in range(0,number)] ret.append( tmp ) return ret def _add_bead(self,b,set_contour=False): if set_contour: b.contour_position = b.get_contour_position(self) # assert(b.parent is None) if b.parent is not None: b.parent.children.remove(b) self.add(b) self.beads.append(b) # don't add orientation bead if "orientation_bead" in b.__dict__: # TODO: think of a cleaner approach o = b.orientation_bead o.contour_position = b.contour_position if o.parent is not None: o.parent.children.remove(o) self.add(o) self.add_bond(b,o, Segment.orientation_bond, exclude=True) def _rebuild_children(self, new_children): # print("_rebuild_children on %s" % self.name) old_children = self.children old_beads = self.beads self.children = [] self.beads = [] if True: print("WARNING: DEBUG") ## Remove duplicates, preserving order tmp = [] for c in new_children: if c not in tmp: tmp.append(c) else: print(" duplicate particle found!") new_children = tmp for b in new_children: self.beads.append(b) self.children.append(b) if "orientation_bead" in b.__dict__: # TODO: think of a cleaner approach self.children.append(b.orientation_bead) # tmp = [c for c in self.children if c not in old_children] # assert(len(tmp) == 0) # tmp = [c for c in old_children if c not in self.children] # assert(len(tmp) == 0) assert(len(old_children) == len(self.children)) assert(len(old_beads) == len(self.beads)) def _generate_beads(self, bead_model, max_basepairs_per_bead, max_nucleotides_per_bead): """ Generate beads (positions, types, etc) and bonds, angles, dihedrals, exclusions """ ## TODO: decide whether to remove bead_model argument ## (currently unused) ## First find points between-which beads must be generated # conn_locs = self.get_contour_sorted_connections_and_locations() # locs = [A for c,A,B in conn_locs] # existing_beads = [l.particle for l in locs if l.particle is not None] existing_beads = {l.particle for l in self.locations if l.particle is not None} existing_beads = sorted( list(existing_beads), key=lambda b: b.get_contour_position(self) ) if len(existing_beads) != len(set(existing_beads)): pdb.set_trace() for b in existing_beads: assert(b.parent is not None) # if self.name == "1-1": # import pdb # pdb.set_trace() ## Add ends if they don't exist yet ## TODOTODO: test 1 nt segments? if len(existing_beads) == 0 or existing_beads[0].get_nt_position(self) > 0.5: # if len(existing_beads) > 0: # assert(existing_beads[0].get_nt_position(self) >= 0.5) b = self._generate_one_bead(0, 0) existing_beads = [b] + existing_beads if existing_beads[-1].get_nt_position(self)-(self.num_nts-1) < -0.5: b = self._generate_one_bead(1, 0) existing_beads.append(b) assert(len(existing_beads) > 1) ## Walk through existing_beads, add beads between tmp_children = [] # build list of children in nice order last = None for I in range(len(existing_beads)-1): eb1,eb2 = [existing_beads[i] for i in (I,I+1)] assert( eb1 is not eb2 ) # if np.isclose(eb1.position[2], eb2.position[2]): # import pdb # pdb.set_trace() print(" %s working on %d to %d" % (self.name, eb1.position[2], eb2.position[2])) e_ds = eb2.get_contour_position(self) - eb1.get_contour_position(self) num_beads = self._get_num_beads( e_ds, max_basepairs_per_bead, max_nucleotides_per_bead ) ds = e_ds / (num_beads+1) nts = ds*self.num_nts eb1.num_nts += 0.5*nts eb2.num_nts += 0.5*nts ## Add beads if eb1.parent == self: tmp_children.append(eb1) s0 = eb1.get_contour_position(self) if last is not None: last.make_intrahelical_neighbor(eb1) last = eb1 for j in range(num_beads): s = ds*(j+1) + s0 b = self._generate_one_bead(s,nts) last.make_intrahelical_neighbor(b) last = b tmp_children.append(b) last.make_intrahelical_neighbor(eb2) if eb2.parent == self: tmp_children.append(eb2) self._rebuild_children(tmp_children) def _regenerate_beads(self, max_nts_per_bead=4, ): ... class DoubleStrandedSegment(Segment): """ Class that describes a segment of ssDNA. When built from cadnano models, should not span helices """ def __init__(self, name, num_nts, start_position = np.array((0,0,0)), end_position = None, segment_model = None, local_twist = False, num_turns = None, start_orientation = None, twist_persistence_length = 90 ): self.helical_rise = 10.44 self.distance_per_nt = 3.4 Segment.__init__(self, name, num_nts, start_position, end_position, segment_model) self.local_twist = local_twist if num_turns is None: num_turns = float(num_nts) / self.helical_rise self.twist_per_nt = float(360 * num_turns) / num_nts if start_orientation is None: start_orientation = np.eye(3) # np.array(((1,0,0),(0,1,0),(0,0,1))) self.start_orientation = start_orientation self.twist_persistence_length = twist_persistence_length self.nicks = [] self.start = self.start5 = Location( self, address=0, type_= "end5" ) self.start3 = Location( self, address=0, type_ = "end3", on_fwd_strand=False ) self.end = self.end3 = Location( self, address=1, type_ = "end3" ) self.end5 = Location( self, address=1, type_= "end5", on_fwd_strand=False ) # for l in (self.start5,self.start3,self.end3,self.end5): # self.locations.append(l) ## Set up interpolation for azimuthal angles a = np.array([self.start_position,self.end_position]).T tck, u = interpolate.splprep( a, u=[0,1], s=0, k=1) self.position_spline_params = tck ## TODO: initialize sensible spline for orientation self.quaternion_spline_params = None ## Convenience methods ## TODO: add errors if unrealistic connections are made ## TODO: make connections automatically between unconnected strands def connect_start5(self, end3, type_="intrahelical", force_connection=False): if isinstance(end3, SingleStrandedSegment): end3 = end3.end3 self._connect_ends( self.start5, end3, type_, force_connection = force_connection ) def connect_start3(self, end5, type_="intrahelical", force_connection=False): if isinstance(end5, SingleStrandedSegment): end5 = end5.start5 self._connect_ends( self.start3, end5, type_, force_connection = force_connection ) def connect_end3(self, end5, type_="intrahelical", force_connection=False): if isinstance(end5, SingleStrandedSegment): end5 = end5.start5 self._connect_ends( self.end3, end5, type_, force_connection = force_connection ) def connect_end5(self, end3, type_="intrahelical", force_connection=False): if isinstance(end3, SingleStrandedSegment): end3 = end3.end3 self._connect_ends( self.end5, end3, type_, force_connection = force_connection ) def add_crossover(self, nt, other, other_nt, strands_fwd=[True,False], nt_on_5prime=True): """ Add a crossover between two helices """ ## Validate other, nt, other_nt ## TODO if isinstance(other,SingleStrandedSegment): other.add_crossover(other_nt, self, nt, strands_fwd[::-1], not nt_on_5prime) else: ## Create locations, connections and add to segments c = self.nt_pos_to_contour(nt) assert(c >= 0 and c <= 1) loc = self.get_location_at(c, strands_fwd[0]) c = other.nt_pos_to_contour(other_nt) # TODOTODO: may need to subtract or add a little depending on 3prime/5prime assert(c >= 0 and c <= 1) other_loc = other.get_location_at(c, strands_fwd[1]) self._connect(other, Connection( loc, other_loc, type_="crossover" )) if nt_on_5prime: loc.is_3prime_side_of_connection = False other_loc.is_3prime_side_of_connection = True else: loc.is_3prime_side_of_connection = True other_loc.is_3prime_side_of_connection = False ## Real work def _connect_ends(self, end1, end2, type_, force_connection): ## TODO remove self? ## validate the input for end in (end1, end2): assert( isinstance(end, Location) ) assert( end.type_ in ("end3","end5") ) assert( end1.type_ != end2.type_ ) ## Create and add connection if end2.type_ == "end5": end1.container._connect( end2.container, Connection( end1, end2, type_=type_ ), in_3prime_direction=True ) else: end2.container._connect( end1.container, Connection( end2, end1, type_=type_ ), in_3prime_direction=True ) def _get_num_beads(self, contour, max_basepairs_per_bead, max_nucleotides_per_bead): return int(contour*self.num_nts // max_basepairs_per_bead) def _generate_one_bead(self, contour_position, nts): pos = self.contour_to_position(contour_position) if self.local_twist: orientation = self.contour_to_orientation(contour_position) if orientation is None: print("WARNING: local_twist is True, but orientation is None; using identity") orientation = np.eye(3) opos = pos + orientation.dot( np.array((Segment.orientation_bond.r0,0,0)) ) o = SegmentParticle( Segment.orientation_particle, opos, nts, num_nts=nts, parent=self ) bead = SegmentParticle( Segment.dsDNA_particle, pos, name="DNA", num_nts=nts, parent=self, orientation_bead=o, contour_position=contour_position ) else: bead = SegmentParticle( Segment.dsDNA_particle, pos, name="DNA", num_nts=nts, parent=self, contour_position=contour_position ) self._add_bead(bead) return bead class SingleStrandedSegment(Segment): """ Class that describes a segment of ssDNA. When built from cadnano models, should not span helices """ def __init__(self, name, num_nts, start_position = np.array((0,0,0)), end_position = None, segment_model = None): self.distance_per_nt = 5 Segment.__init__(self, name, num_nts, start_position, end_position, segment_model) self.start = self.start5 = Location( self, address=0, type_= "end5" ) # TODO change type_? self.end = self.end3 = Location( self, address=1, type_ = "end3" ) # for l in (self.start5,self.end3): # self.locations.append(l) def connect_end3(self, end5, force_connection=False): self._connect_end( end5, _5_to_3 = True, force_connection = force_connection ) def connect_5end(self, end3, force_connection=False): # TODO: change name or possibly deprecate self._connect_end( end3, _5_to_3 = False, force_connection = force_connection ) def _connect_end(self, other, _5_to_3, force_connection): assert( isinstance(other, Location) ) if _5_to_3 == True: my_end = self.end3 # assert( other.type_ == "end5" ) if (other.type_ is not "end5"): print("Warning: code does not prevent connecting 3prime to 3prime, etc") conn = Connection( my_end, other, type_="intrahelical" ) self._connect( other.container, conn, in_3prime_direction=True ) else: my_end = self.end5 # assert( other.type_ == "end3" ) if (other.type_ is not "end3"): print("Warning: code does not prevent connecting 3prime to 3prime, etc") conn = Connection( other, my_end, type_="intrahelical" ) other.container._connect( self, conn, in_3prime_direction=True ) def add_crossover(self, nt, other, other_nt, strands_fwd=[True,False], nt_on_5prime=True): """ Add a crossover between two helices """ ## Validate other, nt, other_nt ## TODO ## TODO: fix direction # c1 = self.nt_pos_to_contour(nt) # # TODOTODO # ## Ensure connections occur at ends, otherwise the structure doesn't make sense # # assert(np.isclose(c1,0) or np.isclose(c1,1)) # assert(np.isclose(nt,0) or np.isclose(nt,self.num_nts-1)) if nt == 0: c1 = 0 elif nt == self.num_nts-1: c1 = 1 else: raise Exception("Crossovers can only be at the ends of an ssDNA segment") loc = self.get_location_at(c1, True) if other_nt == 0: c2 = 0 elif other_nt == other.num_nts-1: c2 = 1 else: c2 = other.nt_pos_to_contour(other_nt) if isinstance(other,SingleStrandedSegment): ## Ensure connections occur at opposing ends assert(np.isclose(other_nt,0) or np.isclose(other_nt,self.num_nts-1)) other_loc = other.get_location_at( c2, True ) if ("22-2" in (self.name, other.name)): pdb.set_trace() if nt_on_5prime: self.connect_end3( other_loc ) else: other.connect_end3( self ) else: assert(c2 >= 0 and c2 <= 1) other_loc = other.get_location_at( c2, strands_fwd[1] ) if nt_on_5prime: self._connect(other, Connection( loc, other_loc, type_="sscrossover" ), in_3prime_direction=True ) else: other._connect(self, Connection( other_loc, loc, type_="sscrossover" ), in_3prime_direction=True ) def _get_num_beads(self, contour, max_basepairs_per_bead, max_nucleotides_per_bead): return int(contour*self.num_nts // max_nucleotides_per_bead) def _generate_one_bead(self, contour_position, nts): pos = self.contour_to_position(contour_position) b = SegmentParticle( Segment.ssDNA_particle, pos, name="NAS", num_nts=nts, parent=self, contour_position=contour_position ) self._add_bead(b) return b class StrandInSegment(Group): """ Class that holds atomic model, maps to segment """ def __init__(self, segment, start, end, is_fwd): """ start/end should be provided expressed in nt coordinates, is_fwd tuples """ Group.__init__(self) self.num_nts = 0 # self.sequence = [] self.segment = segment self.start = start self.end = end self.is_fwd = is_fwd nts = np.abs(end-start)+1 self.num_nts = int(round(nts)) assert( np.isclose(self.num_nts,nts) ) # print(" Creating {}-nt StrandInSegment in {} from {} to {} {}".format(self.num_nts, segment.name, start, end, is_fwd)) def _nucleotide_ids(self): nt0 = self.start # seg.contour_to_nt_pos(self.start) assert( np.abs(nt0 - round(nt0)) < 1e-5 ) nt0 = int(round(nt0)) assert( (self.end-self.start) >= 0 or not self.is_fwd ) direction = (2*self.is_fwd-1) return range(nt0,nt0 + direction*self.num_nts, direction) def get_sequence(self): """ return 5-to-3 """ # TODOTODO test seg = self.segment if self.is_fwd: return [seg.sequence[nt] for nt in self._nucleotide_ids()] else: return [seqComplement[seg.sequence[nt]] for nt in self._nucleotide_ids()] def get_contour_points(self): c0,c1 = [self.segment.nt_pos_to_contour(p) for p in (self.start,self.end)] return np.linspace(c0,c1,self.num_nts) class Strand(Group): """ Class that holds atomic model, maps to segments """ def __init__(self, segname = None): Group.__init__(self) self.num_nts = 0 self.children = self.strand_segments = [] self.segname = segname ## TODO disambiguate names of functions def add_dna(self, segment, start, end, is_fwd): # TODOTODO use nt pos ? """ start/end should be provided expressed as contour_length, is_fwd tuples """ if not (segment.contour_to_nt_pos(np.abs(start-end)) > 0.9): import pdb pdb.set_trace() for s in self.strand_segments: if s.segment == segment and s.is_fwd == is_fwd: # assert( s.start not in (start,end) ) # assert( s.end not in (start,end) ) if s.start in (start,end) or s.end in (start,end): import pdb pdb.set_trace() print(" CIRCULAR DNA") s = StrandInSegment( segment, start, end, is_fwd ) self.add( s ) self.num_nts += s.num_nts def set_sequence(self,sequence): # , set_complement=True): ## validate input assert( len(sequence) >= self.num_nts ) assert( np.all( [i in ('A','T','C','G') for i in sequence] ) ) seq_idx = 0 ## set sequence on each segment for s in self.children: seg = s.segment if seg.sequence is None: seg.sequence = [None for i in range(seg.num_nts)] if s.is_fwd: for nt in s._nucleotide_ids(): seg.sequence[nt] = sequence[seq_idx] seq_idx += 1 else: for nt in s._nucleotide_ids(): seg.sequence[nt] = seqComplement[sequence[seq_idx]] seq_idx += 1 # def get_sequence(self): # sequence = [] # for ss in self.strand_segments: # sequence.extend( ss.get_sequence() ) # assert( len(sequence) >= self.num_nts ) # ret = ["5"+sequence[0]] +\ # sequence[1:-1] +\ # [sequence[-1]+"3"] # assert( len(ret) == self.num_nts ) # return ret def generate_atomic_model(self,scale): last = None resid = 1 strand_segment_count = 0 for s in self.strand_segments: strand_segment_count += 1 seg = s.segment contour = s.get_contour_points() assert(s.end != s.start) assert(np.linalg.norm( seg.contour_to_position(contour[-1]) - seg.contour_to_position(contour[0]) ) > 0.1) for c,seq in zip(contour,s.get_sequence()): if last is None: seq = "5"+seq if strand_segment_count == len(s.strand_segments) and c == 1: seq = seq+"3" nt = seg._generate_atomic_nucleotide( c, s.is_fwd, seq, scale ) # if s.is_fwd: # else: # nt = seg._generate_atomic_nucleotide( c, s.is_fwd, "A" ) s.add(nt) ## Join last basepairs if last is not None: o3,c3,c4,c2,h3 = [last.atoms_by_name[n] for n in ("O3'","C3'","C4'","C2'","H3'")] p,o5,o1,o2,c5 = [nt.atoms_by_name[n] for n in ("P","O5'","O1P","O2P","C5'")] self.add_bond( o3, p, None ) self.add_angle( c3, o3, p, None ) for x in (o5,o1,o2): self.add_angle( o3, p, x, None ) self.add_dihedral(c3, o3, p, x, None ) for x in (c4,c2,h3): self.add_dihedral(x, c3, o3, p, None ) self.add_dihedral(o3, p, o5, c5, None) nt.__dict__['resid'] = resid resid += 1 last = nt def update_atomic_orientations(self,default_orientation): last = None resid = 1 for s in self.strand_segments: seg = s.segment contour = s.get_contour_points() for c,seq,nt in zip(contour,s.get_sequence(),s.children): orientation = seg.contour_to_orientation(c) ## TODO: move this code (?) if orientation is None: axis = seg.contour_to_tangent(c) angleVec = np.array([1,0,0]) if axis.dot(angleVec) > 0.9: angleVec = np.array([0,1,0]) angleVec = angleVec - angleVec.dot(axis)*axis angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(axis,angleVec) orientation = np.array([angleVec,y,axis]).T nt.orientation = orientation.dot(default_orientation) # this one should be correct class SegmentModel(ArbdModel): def __init__(self, segments=[], local_twist=True, escapable_twist=True, max_basepairs_per_bead=7, max_nucleotides_per_bead=4, dimensions=(1000,1000,1000), temperature=291, timestep=50e-6, cutoff=50, decompPeriod=10000, pairlistDistance=None, nonbondedResolution=0,DEBUG=0): self.DEBUG = DEBUG if DEBUG > 0: print("Building ARBD Model") ArbdModel.__init__(self,segments, dimensions, temperature, timestep, cutoff, decompPeriod, pairlistDistance=None, nonbondedResolution=0) # self.max_basepairs_per_bead = max_basepairs_per_bead # dsDNA # self.max_nucleotides_per_bead = max_nucleotides_per_bead # ssDNA self.children = self.segments = segments self._bonded_potential = dict() # cache for bonded potentials self._generate_bead_model( max_basepairs_per_bead, max_nucleotides_per_bead, local_twist, escapable_twist) self.useNonbondedScheme( nbDnaScheme ) def get_connections(self,type_=None,exclude=[]): """ Find all connections in model, without double-counting """ added=set() ret=[] for s in self.segments: items = [e for e in s.get_connections_and_locations(type_,exclude=exclude) if e[0] not in added] added.update([e[0] for e in items]) ret.extend( items ) return ret def _recursively_get_beads_within_bonds(self,b1,bonds,done=[]): ret = [] done = list(done) done.append(b1) if bonds == 0: return [[]] for b2 in b1.intrahelical_neighbors: if b2 in done: continue for tmp in self._recursively_get_beads_within_bonds(b2, bonds-1, done): ret.append( [b2]+tmp ) return ret def _get_intrahelical_beads(self,num=2): ## TODO: add check that this is not called before adding intrahelical_neighbors in _generate_bead_model assert(num >= 2) ret = [] for s in self.segments: for b1 in s.beads: for bead_list in self._recursively_get_beads_within_bonds(b1, num-1): assert(len(bead_list) == num-1) if b1.idx < bead_list[-1].idx: # avoid double-counting ret.append([b1]+bead_list) return ret def _get_intrahelical_angle_beads(self): return self._get_intrahelical_beads(num=3) def _get_potential(self, type_, kSpring, d, max_potential = None): key = (type_, kSpring, d, max_potential) if key not in self._bonded_potential: if type_ == "bond": self._bonded_potential[key] = HarmonicBond(kSpring,d, rRange=(0,500), max_potential=max_potential) elif type_ == "angle": self._bonded_potential[key] = HarmonicAngle(kSpring,d, max_potential=max_potential) # , resolution = 1, maxForce=0.1) elif type_ == "dihedral": self._bonded_potential[key] = HarmonicDihedral(kSpring,d, max_potential=max_potential) else: raise Exception("Unhandled potential type '%s'" % type_) return self._bonded_potential[key] def get_bond_potential(self, kSpring, d): return self._get_potential("bond", kSpring, d) def get_angle_potential(self, kSpring, d): return self._get_potential("angle", kSpring, d) def get_dihedral_potential(self, kSpring, d, max_potential=None): while d > 180: d-=360 while d < -180: d+=360 return self._get_potential("dihedral", kSpring, d, max_potential) def _getParent(self, *beads ): if np.all( [b1.parent == b2.parent for b1,b2 in zip(beads[:-1],beads[1:])] ): return beads[0].parent else: return self def _get_twist_spring_constant(self, sep): """ sep in nt """ kT = 0.58622522 # kcal/mol twist_persistence_length = 90 # set semi-arbitrarily as there is a large spread in literature ## = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} ) ## Assume A is small ## int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/ ## Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]] ## Actually, without assumptions I get fitFun below ## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405 ## units "3e-19 erg cm/ 295 k K" "nm" =~ 73 Lp = twist_persistence_length/0.34 fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - np.exp(-sep/Lp) k = opt.leastsq( fitFun, x0=np.exp(-sep/Lp) ) return k[0][0] * 2*kT*0.00030461742 """ Mapping between different resolution models """ def _clear_beads(self): for s in self.segments: s.clear_all() self.clear_all(keep_children=True) assert( len([b for b in self]) == 0 ) locParticles = [] # for c,A,B in self.get_connections(): for s in self.segments: for c,A,B in s.get_connections_and_locations(): for l in (A,B): if l.particle is not None: locParticles.append(A.particle) assert( len(locParticles) == 0 ) assert( len([b for s in self.segments for b in s.beads]) == 0 ) def _update_segment_positions(self, bead_coordinates): """ Set new function for each segments functions contour_to_position and contour_to_orientation """ for s in self.segments: cabs = s.get_connections_and_locations("intrahelical") if np.any( [B.particle is None for c,A,B in cabs] ): print( "WARNING: none type found in connection, skipping" ) cabs = [e for e in cabs if e[2].particle is not None] beads = set(s.beads + [A.particle for c,A,B in cabs]) ## Add nearby beads for c,A,B in cabs: ## TODOTODO test? filter_fn = lambda x: x is not None and x not in beads bs = list( filter( filter_fn, B.particle.intrahelical_neighbors ) ) beads.update(bs) bs = list( filter( filter_fn, [n for b in bs for n in b.intrahelical_neighbors] ) ) beads.update(bs) beads = list(beads) ## Skip beads that are None (some locations were not assigned a particle to avoid double-counting) beads = [b for b in beads if b is not None] contours = [b.get_contour_position(s) for b in beads] cb = sorted( zip(contours,beads), key=lambda a:a[0] ) beads = [b for c,b in cb] contours = [c for c,b in cb] ids = [b.idx for b in beads] """ Get positions """ positions = bead_coordinates[ids,:].T try: tck, u = interpolate.splprep( positions, u=contours, s=0, k=3 ) except: tck, u = interpolate.splprep( positions, u=contours, s=0, k=1 ) s.position_spline_params = tck """ Get twist """ cb = [e for e in cb if 'orientation_bead' in e[1].__dict__] beads = [b for c,b in cb] contours = [c for c,b in cb] ids = [b.idx for b in beads] # if 'orientation_bead' in beads[0].__dict__: if len(beads) > 3: tangents = s.contour_to_tangent(contours) quats = [] lastq = None for b,t in zip(beads,tangents): o = b.orientation_bead # positions # angleVec = o.position - b.position angleVec = bead_coordinates[o.idx,:] - bead_coordinates[b.idx,:] angleVec = angleVec - angleVec.dot(t)*t angleVec = angleVec/np.linalg.norm(angleVec) y = np.cross(t,angleVec) assert( np.abs(np.linalg.norm(y) - 1) < 1e-2 ) q = quaternion_from_matrix( np.array([angleVec,y,t]).T) # q = quaternion_from_matrix( np.array([angleVec,y,t])) if lastq is not None: if q.dot(lastq) < 0: q = -q quats.append( q ) lastq = q # pdb.set_trace() quats = np.array(quats) ## TODOTODO test smoothing try: tck, u = interpolate.splprep( quats.T, u=contours, s=3, k=3 ) except: tck, u = interpolate.splprep( quats.T, u=contours, s=0, k=1 ) s.quaternion_spline_params = tck def _generate_bead_model(self, max_basepairs_per_bead = 7, max_nucleotides_per_bead = 4, local_twist=False, escapable_twist=True): segments = self.segments for s in segments: s.local_twist = local_twist """ Simplify connections """ # d_nt = dict() # # for s in segments: # d_nt[s] = 1.5/(s.num_nts-1) # for s in segments: # ## replace consecutive crossovers with # cl = sorted( s.get_connections_and_locations("crossover"), key=lambda x: x[1].address ) # last = None # for entry in cl: # c,A,B = entry # if last is not None and \ # (A.address - last[1].address) < d_nt[s]: # same_type = c.type_ == last[0].type_ # same_dest_seg = B.container == last[2].container # if same_type and same_dest_seg: # if np.abs(B.address - last[2].address) < d_nt[B.container]: # ## combine # A.combine = last[1] # B.combine = last[2] # ... # # if last is not None: # # s.bead_locations.append(last) # ... # last = entry # del d_nt """ Generate beads at intrahelical junctions """ if self.DEBUG: print( "Adding intrahelical beads at junctions" ) ## Loop through all connections, generating beads at appropriate locations for c,A,B in self.get_connections("intrahelical"): s1,s2 = [l.container for l in (A,B)] ## TODO be more elegant! # if isinstance(s1, DoubleStrandedSegment) and isinstance(s2, DoubleStrandedSegment) and A.on_fwd_strand == False: continue if isinstance(s1, DoubleStrandedSegment) and isinstance(s2, DoubleStrandedSegment) and A.on_fwd_strand == False: continue ## if A.on_fwd_strand == False: continue # TODO verify this avoids double-counting assert( A.particle is None ) assert( B.particle is None ) ## TODO: offload the work here to s1 # TODOTODO a1,a2 = [l.address for l in (A,B)] # a1,a2 = [a - s.nt_pos_to_contour(0.5) if a == 0 else a + s.nt_pos_to_contour(0.5) for a,s in zip((a1,a2),(s1,s2))] for a in (a1,a2): assert( np.isclose(a,0) or np.isclose(a,1) ) # a1,a2 = [a - s.nt_pos_to_contour(0) if a == 0 else a + s.nt_pos_to_contour(0) for a,s in zip((a1,a2),(s1,s2))] ## TODO improve this for combinations of ssDNA and dsDNA (maybe a1/a2 should be calculated differently) if isinstance(s1,DoubleStrandedSegment): b = s1.get_nearest_bead(a1) if b is not None: if np.abs(b.get_nt_position(s1) - s1.contour_to_nt_pos(a1)) > 0.5: b = None elif isinstance(s2,DoubleStrandedSegment): b = s2.get_nearest_bead(a2) if b is not None: if np.abs(b.get_nt_position(s2) - s2.contour_to_nt_pos(a2)) > 0.5: b = None if b is not None and b.parent not in (s1,s2): b = None if b is None: ## need to generate a bead if isinstance(s2,DoubleStrandedSegment): b = s2._generate_one_bead(a2,0) else: b = s1._generate_one_bead(a1,0) A.particle = B.particle = b b.locations.extend([A,B]) """ Generate beads at other junctions """ for c,A,B in self.get_connections(exclude="intrahelical"): s1,s2 = [l.container for l in (A,B)] if A.particle is not None and B.particle is not None: continue # assert( A.particle is None ) # assert( B.particle is None ) ## TODO: offload the work here to s1/s2 (?) a1,a2 = [l.address for l in (A,B)] if A.particle is None: b = s1.get_nearest_bead(a1) if b is not None and s1.contour_to_nt_pos(np.abs(b.contour_position-a1)) < 1: ## combine beads b.contour_position = 0.5*(b.contour_position + a1) # avg position else: b = s1._generate_one_bead(a1,0) A.particle = b b.locations.append(A) if B.particle is None: b = s2.get_nearest_bead(a2) if b is not None and s2.contour_to_nt_pos(np.abs(b.contour_position-a2)) < 19: ## combine beads b.contour_position = 0.5*(b.contour_position + a2) # avg position else: b = s2._generate_one_bead(a2,0) B.particle = b b.locations.append(B) """ Some tests """ for c,A,B in self.get_connections("intrahelical"): for l in (A,B): if l.particle is None: continue assert( l.particle.parent is not None ) """ Generate beads in between """ if self.DEBUG: print("Generating beads") for s in segments: s._generate_beads( self, max_basepairs_per_bead, max_nucleotides_per_bead ) # """ Combine beads at junctions as needed """ # for c,A,B in self.get_connections(): # ... """ Add intrahelical neighbors at connections """ for c,A,B in self.get_connections("intrahelical"): b1,b2 = [l.particle for l in (A,B)] if b1 is b2: ## already handled by Segment._generate_beads continue else: for b in (b1,b2): assert( b is not None ) b1.make_intrahelical_neighbor(b2) """ Reassign bead types """ if self.DEBUG: print("Assigning bead types") beadtype_s = dict() for segment in segments: for b in segment: b.num_nts = np.around( b.num_nts, decimals=1 ) key = (b.type_.name[0].upper(), b.num_nts) if key in beadtype_s: b.type_ = beadtype_s[key] else: t = deepcopy(b.type_) if key[0] == "D": t.__dict__["nts"] = b.num_nts*2 elif key[0] == "S": t.__dict__["nts"] = b.num_nts elif key[0] == "O": t.__dict__["nts"] = b.num_nts else: raise Exception("TODO") # print(t.nts) t.name = t.name + "%03d" % (10*t.nts) beadtype_s[key] = b.type_ = t """ Update bead indices """ self._countParticleTypes() # probably not needed here self._updateParticleOrder() """ Add intrahelical bond potentials """ if self.DEBUG: print("Adding intrahelical bond potentials") dists = dict() # intrahelical distances built for later use intra_beads = self._get_intrahelical_beads() if self.DEBUG: print(" Adding %d bonds" % len(intra_beads)) for b1,b2 in intra_beads: parent = self._getParent(b1,b2) ## TODO: could be sligtly smarter about sep sep = 0.5*(b1.num_nts+b2.num_nts) conversion = 0.014393265 # units "pN/AA" kcal_mol/AA^2 if b1.type_.name[0] == "D" and b2.type_.name[0] == "D": elastic_modulus = 1000 # pN http://markolab.bmbcb.northwestern.edu/marko/Cocco.CRP.02.pdf d = 3.4*sep k = conversion*elastic_modulus/d else: ## TODO: get better numbers our ssDNA model elastic_modulus = 800 # pN http://markolab.bmbcb.northwestern.edu/marko/Cocco.CRP.02.pdf d = 5*sep k = conversion*elastic_modulus/d # print(sep,d,k) if b1 not in dists: dists[b1] = dict() if b2 not in dists: dists[b2] = dict() # dists[b1].append([b2,sep]) # dists[b2].append([b1,sep]) dists[b1][b2] = sep dists[b2][b1] = sep # dists[[b1,b2]] = dists[[b2,b1]] = sep bond = self.get_bond_potential(k,d) parent.add_bond( b1, b2, bond, exclude=True ) """ Add intrahelical angle potentials """ if self.DEBUG: print("Adding intrahelical angle potentials") for b1,b2,b3 in self._get_intrahelical_angle_beads(): ## TODO: could be slightly smarter about sep sep = 0.5*b1.num_nts+b2.num_nts+0.5*b3.num_nts parent = self._getParent(b1,b2,b3) kT = 0.58622522 # kcal/mol if b1.type_.name[0] == "D" and b2.type_.name[0] == "D" and b3.type_.name[0] == "D": ## = exp(-s/Lp) = integrate( x^4 exp(-A x^2) / 2, {x, 0, pi} ) / integrate( x^2 exp(-A x^2), {x, 0, pi} ) ## ~ 1 - 3/4A ## where A = k_spring / (2 kT) k = 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 if local_twist: ## TODO optimize this paramter k *= 0.5 # halve because orientation beads have similar springs else: ## TODO: get correct number from ssDNA model k = 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/3))) * 0.00030461742; # kcal_mol/degree^2 angle = self.get_angle_potential(k,180) parent.add_angle( b1, b2, b3, angle ) """ Add intrahelical exclusions """ if self.DEBUG: print("Adding intrahelical exclusions") beads = dists.keys() def _recursively_get_beads_within(b1,d,done=[]): ret = [] for b2,sep in dists[b1].items(): if b2 in done: continue if sep < d: ret.append( b2 ) done.append( b2 ) tmp = _recursively_get_beads_within(b2, d-sep, done) if len(tmp) > 0: ret.extend(tmp) return ret exclusions = set() for b1 in beads: exclusions.update( [(b1,b) for b in _recursively_get_beads_within(b1, 20, done=[b1])] ) if self.DEBUG: print("Adding %d exclusions" % len(exclusions)) for b1,b2 in exclusions: parent = self._getParent(b1,b2) parent.add_exclusion( b1, b2 ) """ Twist potentials """ if local_twist: if self.DEBUG: print("Adding twist potentials") for b1 in beads: if "orientation_bead" not in b1.__dict__: continue for b2,sep in dists[b1].items(): if "orientation_bead" not in b2.__dict__: continue if b2.idx < b1.idx: continue # Don't double-count p1,p2 = [b.parent for b in (b1,b2)] o1,o2 = [b.orientation_bead for b in (b1,b2)] parent = self._getParent( b1, b2 ) """ Add heuristic 90 degree potential to keep orientation bead orthogonal """ k = (1.0/2) * 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 pot = self.get_angle_potential(k,90) parent.add_angle(o1,b1,b2, pot) parent.add_angle(b1,b2,o2, pot) ## TODO: improve this twist_per_nt = 0.5 * (p1.twist_per_nt + p2.twist_per_nt) angle = sep*twist_per_nt if angle > 360 or angle < -360: print("WARNING: twist angle out of normal range... proceeding anyway") # raise Exception("The twist between beads is too large") k = self._get_twist_spring_constant(sep) if escapable_twist: pot = self.get_dihedral_potential(k,angle,max_potential=1) else: pot = self.get_dihedral_potential(k,angle) parent.add_dihedral(o1,b1,b2,o2, pot) """ Add connection potentials """ for c,A,B in self.get_connections("terminal_crossover"): ## TODO: use a better description here b1,b2 = [loc.particle for loc in (c.A,c.B)] pot = self.get_bond_potential(4,18.5) self.add_bond(b1,b2, pot) crossover_bead_pots = set() for c,A,B in self.get_connections("crossover"): b1,b2 = [loc.particle for loc in (c.A,c.B)] ## Avoid double-counting if (b1,b2) in crossover_bead_pots: continue crossover_bead_pots.add((b1,b2)) crossover_bead_pots.add((b2,b1)) pot = self.get_bond_potential(4,18.5) self.add_bond(b1,b2, pot) ## Get beads above and below u1,u2 = [b.get_intrahelical_above() for b in (b1,b2)] d1,d2 = [b.get_intrahelical_below() for b in (b1,b2)] k_fn = lambda sep: (1.0/2) * 1.5 * kT * (1.0 / (1-np.exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 if u1 is not None and u2 is not None: t0 = 0 k = k_fn( 0.5*(dists[b1][u1]+dists[b2][u2]) ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( u1,b1,b2,u2, pot ) elif d1 is not None and d2 is not None: t0 = 0 k = k_fn( 0.5*(dists[b1][d1]+dists[b2][d2]) ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( d1,b1,b2,d2, pot ) elif d1 is not None and u2 is not None: t0 = 180 k = k_fn( 0.5*(dists[b1][d1]+dists[b2][u2]) ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( d1,b1,b2,u2, pot ) elif u1 is not None and d2 is not None: t0 = 180 k = k_fn( 0.5*(dists[b1][u1]+dists[b2][d2]) ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( u1,b1,b2,d2, pot ) if local_twist: k = (1.0/2) * 1.5 * kT * (1.0 / (1-np.exp(-float(1)/147))) * 0.00030461742; # kcal_mol/degree^2 if 'orientation_bead' in b1.__dict__: # t0 = 90 + 60 t0 = 150 if A.on_fwd_strand: t0 = 30 # TODO handle antiparallel segments o = b1.orientation_bead pot = self.get_angle_potential(k,t0) self.add_angle( o,b1,b2, pot ) else: t0 = 150 if B.on_fwd_strand: t0 = 30 o = b2.orientation_bead pot = self.get_angle_potential(k,t0) self.add_angle( b1,b2,o, pot ) t0 = 90 if 'orientation_bead' in b1.__dict__: o1 = b1.orientation_bead if u2 is not None: k = k_fn( dists[b2][u2] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( o1,b1,b2,u2, pot ) elif d2 is not None: k = k_fn( dists[b2][d2] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( o1,b1,b2,d2, pot ) if 'orientation_bead' in b2.__dict__: o2 = b2.orientation_bead if u1 is not None: k = k_fn( dists[b1][u1] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( o2,b2,b1,u1, pot ) elif d1 is not None: k = k_fn( dists[b1][d1] ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( o2,b2,b1,d1, pot ) ## TODOTODO check that this works for crossovers in self.get_consecutive_crossovers(): ## filter crossovers new_cl = [] lastParticle = None for cl in crossovers: c,A,B,d = cl if A.particle is not lastParticle: new_cl.append(cl) lastParticle = A.particle crossovers = new_cl for i in range(len(crossovers)-2): c1,A1,B1,dir1 = crossovers[i] c2,A2,B2,dir2 = crossovers[i+1] s1,s2 = [l.container for l in (A1,A2)] sep = A1.particle.get_nt_position(s1) - A2.particle.get_nt_position(s2) sep = np.abs(sep) n1,n2,n3,n4 = (B1.particle, A1.particle, A2.particle, B2.particle) ## = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} ) ## Assume A is small ## int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/ ## Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]] ## Actually, without assumptions I get fitFun below ## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405 ## units "3e-19 erg cm/ 295 k K" "nm" =~ 73 Lp = s1.twist_persistence_length/0.34 # set semi-arbitrarily as there is a large spread in literature fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - np.exp(-sep/Lp) k = opt.leastsq( fitFun, x0=np.exp(-sep/Lp) ) k = k[0][0] * 2*kT*0.00030461742 t0 = sep*s1.twist_per_nt # TODO weighted avg between s1 and s2 # pdb.set_trace() if A1.on_fwd_strand: t0 -= 120 if dir1 != dir2: A2_on_fwd = not A2.on_fwd_strand else: A2_on_fwd = A2.on_fwd_strand if A2_on_fwd: t0 += 120 # t0 = (t0 % 360 # if n2.idx == 0: # print( n1.idx,n2.idx,n3.idx,n4.idx,k,t0,sep ) pot = self.get_dihedral_potential(k,t0) self.add_dihedral( n1,n2,n3,n4, pot ) def walk_through_helices(segment, direction=1, processed_segments=None): """ First and last segment should be same for circular helices """ assert( direction in (1,-1) ) if processed_segments == None: processed_segments = set() def segment_is_new_helix(s): return isinstance(s,DoubleStrandedSegment) and s not in processed_segments new_s = None s = segment ## iterate intrahelically connected dsDNA segments while segment_is_new_helix(s): conn_locs = s.get_contour_sorted_connections_and_locations("intrahelical")[::direction] processed_segments.add(new_s) new_s = None new_dir = None for i in range(len(conn_locs)): c,A,B = conn_locs[i] ## TODO: handle change of direction # TODOTODO address = 1*(direction==-1) if A.address == address and segment_is_new_helix(B.container): new_s = B.container assert(B.address in (0,1)) new_dir = 2*(B.address == 0) - 1 break yield s,direction s = new_s # will break if None direction = new_dir # if new_s is None: # break # else: # s = new_s # yield s ## return s def get_consecutive_crossovers(self): ## TODOTODO TEST crossovers = [] processed_segments = set() for s1 in self.segments: if not isinstance(s1,DoubleStrandedSegment): continue if s1 in processed_segments: continue s0,d0 = list(SegmentModel.walk_through_helices(s1,direction=-1))[-1] # s,direction = get_start_of_helices() tmp = [] for s,d in SegmentModel.walk_through_helices(s0,-d0): if s == s0 and len(tmp) > 0: ## end of circular helix, only add first crossover tmp.append( s.get_contour_sorted_connections_and_locations("crossover")[::d][0] + [d] ) else: tmp.extend( [cl + [d] for cl in s.get_contour_sorted_connections_and_locations("crossover")[::d]] ) processed_segments.add(s) crossovers.append(tmp) return crossovers def _generate_strands(self): self.strands = strands = [] """ Ensure unconnected ends have 5prime Location objects """ for seg in self.segments: ## TODO move into Segment calls import pdb if False: # TODO: Make this happen conditionally if seg.start5.connection is None: add_end = True for l in seg.get_locations("5prime"): if l.address == 0 and l.on_fwd_strand: add_end = False break if add_end: seg.add_5prime(0) if 'end5' in seg.__dict__ and seg.end5.connection is None: add_end = True for l in seg.get_locations("5prime"): if l.address == 1 and (l.on_fwd_strand is False): add_end = False break if add_end: seg.add_5prime(seg.num_nts-1,on_fwd_strand=False) if 'start3' in seg.__dict__ and seg.start3.connection is None: add_end = True for l in seg.get_locations("3prime"): if l.address == 0 and (l.on_fwd_strand is False): add_end = False break if add_end: seg.add_3prime(0,on_fwd_strand=False) if seg.end3.connection is None: add_end = True for l in seg.get_locations("3prime"): if l.address == 1 and l.on_fwd_strand: add_end = False break if add_end: seg.add_3prime(seg.num_nts-1) # print( [(l,l.get_connected_location()) for l in seg.locations] ) # addresses = np.array([l.address for l in seg.get_locations("5prime")]) # if not np.any( addresses == 0 ): # ## check if end is connected # for c,l,B in self.get_connections_and_locations(): # if c[0] """ Build strands from connectivity of helices """ def _recursively_build_strand(strand, segment, pos, is_fwd, mycounter=0, move_at_least=0.5): mycounter+=1 if mycounter > 1000: import pdb pdb.set_trace() s,seg = [strand, segment] #if seg.name == "22-1" and pos > 140: if seg.name == "22-2": import pdb pdb.set_trace() end_pos, next_seg, next_pos, next_dir, move_at_least = seg.get_strand_segment(pos, is_fwd, move_at_least) s.add_dna(seg, pos, end_pos, is_fwd) if next_seg is not None: # print(" next_dir: {}".format(next_dir)) _recursively_build_strand(s, next_seg, next_pos, next_dir, mycounter, move_at_least) for seg in self.segments: locs = seg.get_5prime_locations() if locs is None: continue # for pos, is_fwd in locs: for l in locs: print("Tracing",l) # TODOTODO pos = seg.contour_to_nt_pos(l.address, round_nt=True) is_fwd = l.on_fwd_strand s = Strand() _recursively_build_strand(s, seg, pos, is_fwd) # print("{} {}".format(seg.name,s.num_nts)) strands.append(s) self.strands = sorted(strands, key=lambda s:s.num_nts)[::-1] # or something ## relabel segname counter = 0 for s in self.strands: if s.segname is None: s.segname = "D%03d" % counter counter += 1 def _update_orientations(self,orientation): for s in self.strands: s.update_atomic_orientations(orientation) def _generate_atomic_model(self, scale=1): self.children = self.strands for s in self.strands: s.generate_atomic_model(scale) return ## Angle optimization angles = np.linspace(-180,180,180) score = [] for a in angles: o = rotationAboutAxis([0,0,1], a) sum2 = count = 0 for s in self.strands: s.update_atomic_orientations(o) for s1,s2 in zip(s.strand_segments[:-1],s.strand_segments[1:]): nt1 = s1.children[-1] nt2 = s2.children[0] o3 = nt1.atoms_by_name["O3'"] p = nt2.atoms_by_name["P"] sum2 += np.sum((p.collapsedPosition()-o3.collapsedPosition())**2) count += 1 score.append(sum2/count) print(angles[np.argmin(score)]) print(score)