# -*- coding: utf-8 -*- from datetime import datetime from cadnano.cnenum import PointType from math import pi,sqrt,exp,floor import numpy as np from scipy.special import erf import scipy.optimize as opt import os, sys, subprocess import nbPot from coords import minimizeRmsd, quaternionToMatrix3, rotationAboutAxis class HarmonicPotential: def __init__(self, k, r0, rRange=(0,50), resolution=0.1, maxForce=None, maxPotential=None): self.k = k self.r0 = r0 self.maxForce = maxForce self.maxPotential = maxPotential self.rRange = rRange self.resolution = resolution self.periodic = False self.type = "None" self._kscale = None def filename(self, prefix='potentials/'): # raise NotImplementedError("Not implemented") return "%s%s-%.3f-%.3f.dat" % (prefix, self.type, self.k*self._kscale, self.r0) def write_file(self, prefix='potentials/'): r = np.arange( self.rRange[0], self.rRange[1]+self.resolution, self.resolution ) dr = r-self.r0 if self.periodic == True: rSpan = self.rRange[1]-self.rRange[0] assert(rSpan > 0) dr = np.mod( dr+0.5*rSpan, rSpan) - 0.5*rSpan u = 0.5*self.k*dr**2 if self.maxForce is not None: assert(self.maxForce > 0) f = np.diff(u)/np.diff(r) f[f > self.maxForce] = self.maxForce f[f < -self.maxForce] = -self.maxForce u[0] = 0 u[1:] = np.cumsum(f*np.diff(r)) u = u - np.min(u) if self.maxPotential is not None: f = np.diff(u)/np.diff(r) ids = np.where( 0.5*(u[1:]+u[:-1]) > self.maxPotential )[0] w = np.sqrt(2*self.maxPotential/self.k) drAvg = 0.5*(np.abs(dr[ids]) + np.abs(dr[ids+1])) f[ids] = f[ids] * np.exp(-(drAvg-w)/(w)) u[0] = 0 u[1:] = np.cumsum(f*np.diff(r)) u = u - np.min(u) np.savetxt( self.filename(prefix), np.array([r, u]).T, fmt="%f" ) def __hash__(self): assert(self.type != "None") return hash((self.type, self.k, self.r0, self.rRange, self.resolution, self.maxForce, self.maxPotential, self.periodic)) def __eq__(self, other): for a in ("type", "k", "r0", "rRange", "resolution", "maxForce", "maxPotential", "periodic"): if self.__dict__[a] != other.__dict__[a]: return False return True class NonBonded(HarmonicPotential): def __init__(self, k, r0, rRange=(0,50), resolution=0.1, maxForce=None, maxPotential=None): super().__init__(k,r0,rRange,resolution,maxForce,maxPotential) self.type = "nonbonded" self._kscale = 1.0 class Bond(HarmonicPotential): def __init__(self, k, r0, rRange=(0,800), resolution=0.1, maxForce=5, maxPotential=None): super().__init__(k,r0,rRange,resolution,maxForce,maxPotential) self.type = "bond" self._kscale = 1.0 class Angle(HarmonicPotential): def __init__(self, k, r0, rRange=(0,180), resolution=0.5, maxForce=None, maxPotential=None): super().__init__(k,r0,rRange,resolution,maxForce,maxPotential) self.type = "angle" self._kscale = (180.0/pi)**2 class Dihedral(HarmonicPotential): def __init__(self, k, r0, rRange=(-180,180), resolution=1, maxForce=None, maxPotential=None): super().__init__(k,r0,rRange,resolution,maxForce,maxPotential) self.periodic = True self.type = "dihedral" self._kscale = (180.0/pi)**2 class Node(): def __init__(self, helix, pos, type="dsDNA"): self.helix = helix self.position = np.array(pos) self.initialPosition = np.array(pos) self.type = type self.nodeAbove = None self.nodeBelow = None self.xovers = [] self.ssXovers = [] self.orientationNode = None self.parentNode = None self.idx = helix.model.numParticles helix.model.numParticles += 1 def addNodeAbove(self, node, separation): assert(self.nodeAbove is None) self.nodeAbove = node self.nodeAboveSep = separation # bp def addNodeBelow(self, node, separation): assert(self.nodeBelow is None) self.nodeBelow = node self.nodeBelowSep = separation # bp def addXover(self, node, fwds, double=False): ## TODO: what is meant by polarity? self.xovers.append( (node,fwds,double) ) def addSsXover(self, node, fwds): self.ssXovers.append( (node,fwds) ) def getNodesAbove(self,numNodes,inclusive=False): assert( type(numNodes) is int and numNodes > 0 ) nodeList,sepList = [[],[]] n = self if inclusive: nodeList.append(n) for i in range(numNodes): if n.nodeAbove is None: break n = n.nodeAbove nodeList.append(n) sepList.append(n.nodeBelowSep) return nodeList,sepList def getNodesBelow(self,numNodes,inclusive=False): assert( type(numNodes) is int and numNodes > 0 ) nodeList,sepList = [[],[]] n = self if inclusive: nodeList.append(n) for i in range(numNodes): if n.nodeBelow is None: break n = n.nodeBelow nodeList.append(n) sepList.append(n.nodeBelowSep) return nodeList,sepList def addOrientationNode(self, node): assert(self.nodeBelow is None) self.orientationNode = node node.parentNode = self class helix(): def __init__(self, model, part, hid): self.model = model self.props = part.getModelProperties().copy() # TODO: maybe move this out of here self.nodes = dict() self.orientationNodes = dict() self.hid = hid if self.props.get('point_type') == PointType.ARBITRARY: # TODO add code to encode Parts with ARBITRARY point configurations raise NotImplementedError("Not implemented") else: vh_props, origins = part.helixPropertiesAndOrigins() for x in vh_props: self.props[x] = vh_props[x][hid] self.origin = origins[hid] x,y = self.origin self.zIdxToPos = lambda idx: (x*10,y*10,-3.4*idx) ## get twizt keys = ['bases_per_repeat', 'turns_per_repeat', 'eulerZ','z'] bpr,tpr,eulerZ,z = [vh_props[k][hid] for k in keys] twist_per_base = tpr*360./bpr self.zIdxToAngle = lambda idx: idx*twist_per_base + eulerZ + 160 def addNode(self, zIdx, strandOccupancies): ## Determine what kind of node we are making i = int(round(zIdx)) if i in strandOccupancies[0] and i in strandOccupancies[1]: type = "dsDNA" elif i in strandOccupancies[0] or i in strandOccupancies[1]: # type = "dsDNA" type = "ssDNA" else: raise Exception( "Attempt to add a node at %d where there is no DNA!\n Strand at indeces: %s" % (i,strandOccupancies) ) ## Add the node n = Node(self, self.zIdxToPos(zIdx), type) if zIdx in self.nodes: raise Exception("Attempted to add a node in the same location (%d:%.1f) twice!" % (self.hid,zIdx)) self.nodes[zIdx] = n if type == "dsDNA": angle = self.zIdxToAngle(zIdx) pos = np.array([2.0,0,0]).dot( rotationAboutAxis([0,0,1], angle) ) o = Node(self, np.array(self.zIdxToPos(zIdx)) + pos, "O") self.orientationNodes[zIdx] = o n.addOrientationNode(o) ## Update ordered list of nodes if self.model.particles is not None: model.buildOrderedParticlesList() return n def getOrigin(self): return self.origin def __iter__(self): for x in sorted(self.nodes.items(), key=lambda x: x[0]): yield x class beadModelTwist(): def __init__(self, part, twistPersistenceLength=75.0, maxBpsPerDNode=4, maxNtsPerSNode=2): self.numParticles = 0 self.helices = dict() self.particles = None self.particleTypeCounts = None # self._nbParams = set() self.bonds = set() self.angles = set() self.dihedrals = set() self._nbParamFiles = [] # self._bondParamFiles = set() # self._angleParamFiles = set() # self._dihedralParamFiles = set() self.twistPersistenceLength = twistPersistenceLength self._buildModel(part, maxBpsPerDNode, maxNtsPerSNode) ## Post process the model self.buildOrderedParticlesList() self._setTypes() self._countParticleTypes() self.buildOrderedParticlesList() def __iter__(self): for x in sorted(self.helices.items(), key=lambda x: x[0]): yield x def buildOrderedParticlesList(self): ## Create ordered list particles = [(n,hid,zid) for hid,hlx in self for zid,n in hlx] particles.extend( [(o,hid,zid) for hid,hlx in self for zid,o in hlx.orientationNodes.items()] ) self.particles = sorted(particles, key=lambda x: (x[0].type, x[0].idx)) ## Update node indices for p,i in zip(self.particles,range(self.numParticles)): p[0].idx = i self.initialCoords = np.array([p[0].initialPosition for p in self.particles]) self._nodeHids = np.array([p[1] for p in self.particles]) def _setTypes(self): for p,hid,zid in self.particles: if p.type == "O": p.bps = 0 continue bps = [] if p.nodeAbove is not None: bps.append(p.nodeAboveSep) if p.nodeBelow is not None: bps.append(p.nodeBelowSep) if bps == []: bps = [3] p.bps = 10*np.mean(bps) if p.type == "ssDNA": p.bps *= 0.5 p.bps = int(round(p.bps)) p.type = "%s%d" % (p.type[0], p.bps) def _countParticleTypes(self): particleTypeCounts = dict() for p in self.particles: t = p[0].type if t in particleTypeCounts: particleTypeCounts[t] += 1 else: particleTypeCounts[t] = 1 self.particleTypeCounts = particleTypeCounts def addHelix(self, part, hid): h = helix(self,part,hid) self.helices[hid] = h return h def _helixStrandsToEnds(self, helixStrands): """Utility method to convert cadnano strand lists into list of indices of terminal points""" endLists = [[],[]] for endList, strandList in zip(endLists,helixStrands): lastStrand = None for s in strandList: if lastStrand is None: ## first strand endList.append(s[0]) elif lastStrand[1] != s[0]-1: assert( s[0] > lastStrand[1] ) endList.extend( [lastStrand[1], s[0]] ) lastStrand = s if lastStrand is not None: endList.append(lastStrand[1]) return endLists def simulate(self, outputPrefix, outputDirectory='output', numSteps=100000000, timestep=100e-6, gpu=0, arbd=None): self._buildBonds(outputPrefix) self._buildAngles(outputPrefix) self._buildDihedrals(outputPrefix) ## Check that potentials don't have hash collisions for potSet in (self.bonds, self.angles, self.dihedrals): pots = [p[-1] for p in potSet] d = dict() for p in pots: f = p.filename if f not in d: d[f]=[] d[f].append(p) for f,pots in d.items(): assert( len(set(pots)) == 1 ) assert(type(gpu) is int) assert(type(numSteps) is int) if outputDirectory == '': outputDirectory='.' if arbd is None: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') fname = os.path.join(path, "arbd") if os.path.isfile(fname) and os.access(fname, os.X_OK): arbd = fname break if not os.path.exists(arbd): raise Exception("ARBD was not found") if not os.path.isfile(arbd): raise Exception("ARBD was not found") if not os.access(arbd, os.X_OK): raise Exception("ARBD is not executable") if not os.path.exists(outputDirectory): os.makedirs(outputDirectory) elif not os.path.isdir(outputDirectory): raise Exception("outputDirectory '%s' is not a directory!" % outputDirectory) self.writePdb( outputPrefix + ".pdb" ) self.writePsf( outputPrefix + ".psf" ) self.writeArbdFiles( outputPrefix, numSteps=numSteps, timestep=timestep ) ## http://stackoverflow.com/questions/18421757/live-output-from-subprocess-command # cmd = "%s -g %d %s.bd %s/%s" % (arbd, gpu, outputPrefix, outputDirectory, outputPrefix) # cmd = (arbd, (-g %d %s.bd %s/%s" % (gpu, outputPrefix, outputDirectory, outputPrefix)) cmd = (arbd, '-g', "%d" % gpu, "%s.bd" % outputPrefix, "%s/%s" % (outputDirectory, outputPrefix)) cmd = tuple(str(x) for x in cmd) print("Running ARBD with: %s" % " ".join(cmd)) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for line in process.stdout: # for line in iter(process.stdout.readline, b''): sys.stdout.write(line) sys.stdout.flush() # sys.stdout.write(line.decode(sys.stdout.encoding)) # -------------------------- # # Methods for building model # # -------------------------- # def _buildModel(self, part, maxBpsPerDNode, maxNtsPerSNode): # maxVhelixId = part.getIdNumMax() props = part.getModelProperties().copy() # print(props) if props.get('point_type') == PointType.ARBITRARY: # TODO add code to encode Parts with ARBITRARY point configurations raise NotImplementedError("Not implemented") else: vh_props, origins = part.helixPropertiesAndOrigins() # print(' VIRTUAL HELICES:', vh_props) # # print(' ORIGINS:', origins) # group_props['virtual_helices'] = vh_props # group_props['origins'] = origins ## TODO: compartmentalize following ## Loop over virtual helices and build lists of strands vh_list = [] strand_list = [] xover_list = [] numHID = part.getIdNumMax() + 1 for id_num in range(numHID): offset_and_size = part.getOffsetAndSize(id_num) if offset_and_size is None: # add a placeholder vh_list.append((id_num, 0)) strand_list.append(None) # prop_list.append(None) else: offset, size = offset_and_size vh_list.append((id_num, size)) fwd_ss, rev_ss = part.getStrandSets(id_num) # for s in fwd_ss: # print(' VHELIX %d fwd_ss:' % id_num, s) fwd_idxs, fwd_colors = fwd_ss.dump(xover_list) rev_idxs, rev_colors = rev_ss.dump(xover_list) strand_list.append((fwd_idxs, rev_idxs)) # if id_num < 2: # print( fwd_idxs ) # for s in fwd_ss: # print( s.insertionsOnStrand() ) ## prop_list.append((fwd_colors, rev_colors)) # for s in strand_list: # print( s ) ## Get dictionary of insertions allInsertions = part.insertions() ## Expand strand_lists for crossover filtering expandedStrandList = [] for fwdRevStrands in strand_list: tmp = [] if fwdRevStrands is not None: for strands in fwdRevStrands: fwdOrRev = [] for a,b in strands: fwdOrRev.extend(range(a,b+1)) tmp.append(fwdOrRev) expandedStrandList.append(tmp) ## Find crossovers involving ssDNA and dsDNA ssXoList, dsXoList, extraInterhelicalBondList = [[],[],[]] for entry in xover_list: h1,f1,z1,h2,f2,z2 = entry if strand_list[h1] is None or strand_list[h2] is None: print("WARNING: crossover to empty helix") continue ds1 = z1 in expandedStrandList[h1][0] and z1 in expandedStrandList[h1][1] ds2 = z2 in expandedStrandList[h2][0] and z2 in expandedStrandList[h2][1] occ1Above = z1+1 in expandedStrandList[h1][0] or z1+1 in expandedStrandList[h1][1] occ2Above = z2+1 in expandedStrandList[h2][0] or z2+1 in expandedStrandList[h2][1] occ1Below = z1-1 in expandedStrandList[h1][0] or z1-1 in expandedStrandList[h1][1] occ2Below = z2-1 in expandedStrandList[h2][0] or z2-1 in expandedStrandList[h2][1] if ((not occ1Above) and (not occ2Below)) or \ ((not occ1Below) and (not occ2Above)): extraInterhelicalBondList.append(entry) else: if ds1 and ds2: dsXoList.append(entry) else: ssXoList.append(entry) ## Build dictionary of dsDNA crossovers xoDicts = [dict() for i in range(numHID)] for hid1 in range(numHID): tmp = xoDicts[hid1] for hid2 in range(numHID): allXos = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in dsXoList if h1 == hid1 and h2 == hid2} allXos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in dsXoList if h2 == hid1 and h1 == hid2} ) allXos = sorted(list(allXos), key = lambda x: (x[0],x[1])) ## Replace each double-crossover with a single one excludedXos, extraXos = [set(),set()] for i in range(len(allXos)): xoi = allXos[i] for j in range(i+1,len(allXos)): xoj = allXos[j] if xoj[0] - xoi[0] > 2: break if xoi[0]+1 == xoj[0] and xoi[1]+1 == xoj[1] and \ xoi[2] == xoj[2] and xoi[3] == xoj[3]: excludedXos.add(xoi) excludedXos.add(xoj) extraXos.add( (xoi[0]+0.5,xoi[1]+0.5,xoi[2],xoi[3]) ) xos = {xo for xo in allXos if xo not in excludedXos} xos.update(extraXos) ## Set dictionary entry xos = list(xos) if len(xos) > 0: tmp[hid2] = xos ## Build dictionary of dsDNA crossovers xoDicts = [dict() for i in range(numHID)] for hid1 in range(numHID): tmp = xoDicts[hid1] for hid2 in range(numHID): allXos = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in dsXoList if h1 == hid1 and h2 == hid2} allXos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in dsXoList if h2 == hid1 and h1 == hid2} ) allXos = sorted(list(allXos), key = lambda x: (x[0],x[1])) ## Replace each double-crossover with a single one excludedXos, extraXos = [set(),set()] for i in range(len(allXos)): xoi = allXos[i] for j in range(i+1,len(allXos)): xoj = allXos[j] if xoj[0] - xoi[0] > 2: break if xoi[0]+1 == xoj[0] and xoi[1]+1 == xoj[1] and \ xoi[2] == xoj[2] and xoi[3] == xoj[3]: excludedXos.add(xoi) excludedXos.add(xoj) extraXos.add( (xoi[0]+0.5,xoi[1]+0.5,xoi[2],xoi[3]) ) xos = {xo for xo in allXos if xo not in excludedXos} xos.update(extraXos) ## Set dictionary entry xos = list(xos) if len(xos) > 0: tmp[hid2] = xos ## Build dictionary of ssDNA crossovers ssXoDicts = [dict() for i in range(numHID)] for hid1 in range(numHID): tmp = ssXoDicts[hid1] for hid2 in range(numHID): xos = {(z1,z2,f1,f2) for h1,f1,z1,h2,f2,z2 in ssXoList if h1 == hid1 and h2 == hid2} xos.update( {(z2,z1,f2,f1) for h1,f1,z1,h2,f2,z2 in ssXoList if h2 == hid1 and h1 == hid2} ) xos = sorted(list(xos), key = lambda x: (x[0],x[1])) ## Set dictionary entry if len(xos) > 0: tmp[hid2] = xos ## Build helices for hid in range(numHID): # print("Working on helix",hid) helixStrands = strand_list[hid] if helixStrands is None: continue ## Build list of tuples containing (idx,length) of insertions/skips insertions = sorted( [(i[0],i[1].length()) for i in allInsertions[hid].items()], key=lambda x: x[0] ) ## Build list of strand ends and list of mandatory node locations ends1,ends2 = self._helixStrandsToEnds(helixStrands) # xoZids = [x for x in xoDicts2[hid].keys()] ## Find crossovers for this helix xoZids = [x[1] for h0 in range(hid) if hid in xoDicts[h0] for x in xoDicts[h0][hid]] xoZids.extend([x[0] for hid2,xos in xoDicts[hid].items() for x in xos]) xoZids.extend([x[1] for h0 in range(hid) if hid in ssXoDicts[h0] for x in ssXoDicts[h0][hid]]) xoZids.extend([x[0] for hid2,xos in ssXoDicts[hid].items() for x in xos]) reqNodeZids = sorted(list(set( ends1 + ends2 + xoZids ) ) ) ## Build lists of which nt sites are occupied in the helix strandOccupancies = [ [x for i in range(0,len(e),2) for x in range(e[i],e[i+1]+1)] for e in (ends1,ends2) ] ## Build helix by adding nodes beadHelix = self.addHelix(part,hid) if hid in (): print("%d nodes:" %hid,reqNodeZids) print("orig xos:",[xo for xo in xover_list if xo[0] == hid or xo[3] == hid]) print("xosZids:", sorted(xoZids) ) print("strandOccupancy1:",strandOccupancies[0]) print("strandOccupancy2:",strandOccupancies[1]) prevNode = None for i in range( len(reqNodeZids)-1 ): zid1,zid2 = reqNodeZids[i:i+2] ## Check that there are nts between zid1 and zid2 before adding nodes zMid = int(0.5*(zid1+zid2)) if zMid in strandOccupancies[0] and zMid in strandOccupancies[1]: ## dsDNA maxBpsPerNode = maxBpsPerDNode if zMid in strandOccupancies[0] or zMid in strandOccupancies[1]: ## ssDNA maxBpsPerNode = maxNtsPerSNode else: continue numBps = zid2-zid1 # if numBps < 2: # print(hid,zid1,zid2) # assert(numBps >= 1) for ins_idx,length in insertions: ## TODO: ensure placement of insertions is correct ## (e.g. are insertions at the ends handled correctly?) if ins_idx < zid1: continue if ins_idx >= zid2: break numBps += length # if numBps = 0: # print("WARNING: found stretch of DNA with 0 length; skipping") # next nodesBetween = round( float(numBps-1)/maxBpsPerNode ) if nodesBetween < 0: nodesBetween = 0 bpsPerNode = float(numBps)/(nodesBetween+1) if bpsPerNode == 0: bpsPerNode = 0.1 zidPerNode = float(zid2-zid1)/(nodesBetween+1) try: if prevNode is None: prevNode = beadHelix.addNode( zid1, strandOccupancies ) for i in range(nodesBetween): node = beadHelix.addNode( zid1+(i+1)*zidPerNode, strandOccupancies ) self._connectNodes(prevNode, node, bpsPerNode) prevNode = node node = beadHelix.addNode( zid2, strandOccupancies ) self._connectNodes(prevNode, node, bpsPerNode) except: print(hid,zid1,zid2,nodesBetween,bpsPerNode) raise Exception("ERROR") prevNode = None if (int(floor(zid2+1)) in strandOccupancies[0]) or \ (int(floor(zid2+1)) in strandOccupancies[1]): prevNode = node ## Add extra intrahelical bonds ## Add crossovers for entry in extraInterhelicalBondList: h1,f1,z1,h2,f2,z2 = entry n1 = self.helices[h1].nodes[z1] n2 = self.helices[h2].nodes[z2] try: self._connectNodes(n1,n2,1) except: assert(True) try: self._connectNodes(n2,n1,1) except: assert(True) ## Add crossovers for hid1 in range(numHID): for hid2, xos in xoDicts[hid1].items(): for xo in xos: self._addCrossover(hid1,hid2,xo) ## Add ssDNA xovers for hid1 in range(numHID): for hid2, xos in ssXoDicts[hid1].items(): for xo in xos: self._addSsCrossover(hid1,hid2,xo) return def _connectNodes(self, below, above, sep): below.addNodeAbove(above, sep) above.addNodeBelow(below, sep) def _addCrossover(self, hid1, hid2, xo): zid1, zid2, isFwd1, isFwd2 = xo node1 = self.helices[hid1].nodes[zid1] node2 = self.helices[hid2].nodes[zid2] ## TODO add polarity polarity = 0 node1.addXover(node2, (isFwd1, isFwd2)) node2.addXover(node1, (isFwd2, isFwd1)) def _addSsCrossover(self, hid1, hid2, xo): zid1, zid2, isFwd1, isFwd2 = xo node1 = self.helices[hid1].nodes[zid1] node2 = self.helices[hid2].nodes[zid2] ## TODO add polarity polarity = 0 node1.addSsXover(node2, isFwd1) node2.addSsXover(node1, isFwd2) def addModel(self, model): assert( isinstance(model, type(self)) ) hidOffset = max( self.helices.keys() ) + 1 # nidOffset = self.numParticles for hid,h in model: self.helices[hid+hidOffset] = h self.numParticles += model.numParticles self.buildOrderedParticlesList() self._setTypes() self._countParticleTypes() def backmap(self, simplerModel, simplerModelCoords, dsDnaHelixNeighborDist=50, dsDnaAllNeighborDist=30, ssDnaHelixNeighborDist=25, ssDnaAllNeighborDist=25): ## Assign each bead to a bead in simplerModel mapToSimplerModel = dict() cgWeight = dict() for hDict,cgHDict in zip(self,simplerModel): assert(hDict[0] == cgHDict[0]) h,cgH = [x[1] for x in (hDict,cgHDict)] # get helix zIdxs = np.array( sorted([i for i,b in cgH]) ) for i,b in h: cgi = np.searchsorted(zIdxs,i,side='left',sorter=None) cgi, = [zIdxs[x] if x < len(zIdxs) else zIdxs[-1] for x in (cgi,)] mapToSimplerModel[b.idx] = [cgH.nodes[x] for x in (cgi,)] for i,b in h.orientationNodes.items(): cgi = np.searchsorted(zIdxs,i,side='left',sorter=None) cgi, = [zIdxs[x] if x < len(zIdxs) else zIdxs[-1] for x in (cgi,)] mapToSimplerModel[b.idx] = [cgH.nodes[x] for x in (cgi,)] ## Find new axis and position of each bead using neighborhood beads = [b for h in self for i,b in h[1].nodes.items()] ## Find transformation for each bead of simplerModel trans = dict() for b in list(set([b for i,bs in mapToSimplerModel.items() for b in bs])): helixCutoff = dsDnaHelixNeighborDist if b.type[0] in ('d','O') else ssDnaHelixNeighborDist allCutoff = dsDnaAllNeighborDist if b.type[0] in ('d','O') else ssDnaAllNeighborDist ids = [] attempts = 0 while len(ids) <= 3: if attempts > 15: raise Exception("Too many attempts to find a neighborhood for backmaping bead %d" % b.idx) ids = simplerModel._getNeighborhoodIds(b, simplerModelCoords, helixCutoff, allCutoff) allCutoff *= 1.2 attempts+=1 posOld = np.array( [simplerModel.particles[i][0].initialPosition for i in ids] ) posNew = np.array( [simplerModelCoords[i] for i in ids] ) try: trans[b.idx] = minimizeRmsd( posOld, posNew ) except: raise Exception("Failed to find orientation of atom %d in the coarser model" % b.idx) # print("ugly") ## Optionally smooth orientations ## Apply transformation to each bead of self beads.extend( [b for h in self for i,b in h[1].orientationNodes.items()] ) for b in beads: cgb, = mapToSimplerModel[b.idx] cgi = cgb.idx r0 = simplerModel.particles[cgi][0].initialPosition R,c0,c1 = trans[cgi] b.position = (b.initialPosition - r0).dot(R) + simplerModelCoords[cgi] assert( np.all(np.isreal( b.position )) ) def _getNeighborhoodIds(self, bead, coords, helixCutoff=50, allCutoff=np.sqrt(35)): i = bead.idx coords0 = self.initialCoords # print(coords0[i,:]) coordsI = np.outer(coords0[i,:],np.ones([len(coords0),1])).T dr2Initial = np.sum((coords0 - coordsI)**2, axis=-1) dr2Final = np.sum((coords - coords[i,:])**2, axis=-1) ## Include all in same helix within 5 nm of bead after simulation ret = list( np.where( (dr2Final < helixCutoff**2) * (self._nodeHids == bead.helix.hid) )[0] ) ret = list( np.where( (dr2Final < helixCutoff**2) * (self._nodeHids == bead.helix.hid) * (dr2Initial < 100**2) )[0] ) ## Include all within 3.5 nm both before AND after simulation ret.extend( list( np.where( (dr2Final < allCutoff**2) * (dr2Initial < allCutoff**2) )[0] ) ) return sorted(list(set(ret))) # -------------------------- # # Methods for querying model # # -------------------------- # def _getIntrahelicalNodeSeries(self,seriesLen): nodeSeries = set() for hid,hlx in self: for zid,n in hlx: nodeList,sepList = n.getNodesAbove(seriesLen-1, inclusive = True) if len(nodeList) == seriesLen: nodeList = tuple(nodeList) sepList = tuple(sepList) nodeSeries.add( tuple((nodeList,sepList)) ) return nodeSeries def _getIntrahelicalBonds(self): return self._getIntrahelicalNodeSeries(2) def _getIntrahelicalAngles(self): return self._getIntrahelicalNodeSeries(3) def _getOrientationBonds(self): nodeSeries = set() for hid,hlx in self: for zid,n in hlx: if n.orientationNode is not None: nodeSeries.add( tuple(((n.orientationNode,n),(0.2,))) ) return nodeSeries def _getOrientationAngles(self): nodeSeries = set() for hid,hlx in self: for zid,n in hlx: if n.orientationNode is not None and n.nodeAbove is not None: nodeSeries.add( tuple(((n.orientationNode,n,n.nodeAbove),(0.2, n.nodeAboveSep))) ) return nodeSeries def _getOrientationDihedrals(self): nodeSeries = set() for hid,hlx in self: for zid,n1 in hlx: if n1.nodeAbove is not None: n2 = n1.nodeAbove if n1.orientationNode is not None and n2.orientationNode is not None: nodeSeries.add( tuple(((n1.orientationNode,n1,n2,n2.orientationNode), (0.2, n1.nodeAboveSep, 0.2))) ) return nodeSeries def _getCrossoverBonds(self): return { ((n, xo[0]), xo[1]) for hid,hlx in self for zid,n in hlx for xo in n.xovers if n.idx < xo[0].idx } def _getSsCrossoverBonds(self): return { ((n, xo[0]), xo[1]) for hid,hlx in self for zid,n in hlx for xo in n.ssXovers if n.idx < xo[0].idx } def _getCrossoverAnglesAndDihedrals(self): angles,dihedrals = [set(),set()] contiguousCrossovers = [] for hid,hlx in self.helices.items(): crossovers = [] bpsBetween = 0 for zid,n in hlx: ## Search for contiguous crossovers if n.nodeBelow is None or n.type[0] != "d": ## Found ssDNA or a gap; reset search if len(crossovers) > 0: contiguousCrossovers.append(crossovers) crossovers = [] bpsBetween = 0 if n.nodeBelow is not None: bpsBetween += n.nodeBelowSep if len(n.xovers) > 0: crossovers.append( (n,bpsBetween) ) if len(crossovers) > 0: contiguousCrossovers.append(crossovers) ## Process contiguousCrossovers for crossovers in contiguousCrossovers: for i in range(len(crossovers)-1): ni,bpi = crossovers[i] # for j in range(i+1,len(crossovers)): for j in range(i+1,i+2): # Just look at adjacent crossovers assert(j == i+1) nj,bpj = crossovers[j] bpsBetween = bpj-bpi if bpsBetween < 60: for xo1 in ni.xovers: for xo2 in nj.xovers: assert( bpsBetween != 0 ) angles.add( ((xo1[0], ni, nj), bpsBetween) ) angles.add( ((ni, nj, xo2[0]), bpsBetween) ) dihedrals.add( ((xo1[0], ni, nj, xo2[0]), bpsBetween, xo1[1], xo2[1]) ) else: break return angles, dihedrals def _removeIntrahelicalConnectionsAbove(self, cutoff): bonds = self._getIntrahelicalBonds() for b in bonds: n1,n2 = b[0] r2 = np.sum( (n1.position - n2.position)**2 ) if r2 > cutoff**2: if n1.above == n2: assert(n2.below == n1) n1.above = None n2.below = None elif n2.above == n1: assert(n1.below == n2) n1.below = None n2.above = None else: raise def _removeCrossoversAbove(self, cutoff): # bonds = self._getCrossoverBonds() for hid,hlx in self: for zid,n1 in hlx: newXovers = [] for xo in n1.xovers: n2 = xo[0] r2 = np.sum( (n1.position - n2.position)**2 ) if r2 < cutoff**2: newXovers.append(xo) n1.xovers = newXovers # def _getBonds(self): # bonds = self._getIntrahelicalBonds() # bonds.update( self._getCrossoverBonds() ) # bonds.update( self._getSsCrossoverBonds() ) # return bonds # -------------------------- # # Methods for prinitng model # # -------------------------- # def writePdb(self, filename): with open(filename,'w') as fh: ## Write header fh.write("CRYST1 1000. 1000. 1000. 90.00 90.00 90.00 P 1 1\n") ## Write coordinates formatString = "ATOM {:>5d} {:^4s}{:1s}{:3s} {:1s}{:>5s} {:8.3f}{:8.3f}{:8.3f}{:6.2f}{:6.2f}{:2s}{:2f}\n" for n,hid,zid in self.particles: ## http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM idx = n.idx name = n.type resname = name[:3] chain = "A" charge = 0 occ = hid beta = zid x,y,z = [x for x in n.position] assert(idx < 1e5) resid = "{:<4d}".format(idx) fh.write( formatString.format( idx, name[:1], "", resname, chain, resid, x, y, z, occ, beta, "", charge )) return def writePsf(self, filename): with open(filename,'w') as fh: ## Write header fh.write("PSF NAMD\n\n") # create NAMD formatted psf ## ATOMS section idx=1 for hid,hlx in self: for x in hlx: idx += 1 idx += len(hlx.orientationNodes) # for x in hlx.orientationNodes.items(): # idx += 1 fh.write("{:>8d} !NATOM\n".format(idx-1)) ## From vmd/plugins/molfile_plugin/src/psfplugin.c ## "%d %7s %10s %7s %7s %7s %f %f" formatString = "{idx:>8d} {segname:7s} {resid:<10s} {resname:7s}" + \ " {name:7s} {type:7s} {charge:f} {mass:f}\n" for n,hid,zid in self.particles: idx = n.idx + 1 data = dict( idx = idx, segname = "A", resid = "%d%c%c" % (idx," "," "), # TODO: work with large indeces name = n.type[:1], resname = n.type[:3], type = n.type[:1], charge = 0, mass = 100, ) fh.write(formatString.format( **data )) fh.write("\n") ## Write out bonds bonds = self.bonds fh.write("{:>8d} !NBOND\n".format(len(bonds))) counter = 0 for n1,n2,pot in bonds: fh.write( "{:d} {:d} ".format(n1.idx+1,n2.idx+1) ) counter += 1 if counter == 3: fh.write("\n") counter = 0 fh.write("\n") return def writeArbdFiles(self, prefix, numSteps=100000000, timestep=100e-6): ## TODO: save and reference directories and prefixes using member data d = "potentials" self._writeArbdCoordFile( prefix + ".coord.txt" ) self._writeArbdBondFile( prefix, directory = d ) self._writeArbdAngleFile( prefix, directory = d ) self._writeArbdDihedralFile( prefix, directory = d ) self._writeArbdExclFile( prefix + ".excludes.txt" ) self._writeArbdPotentialFiles( prefix, directory = d ) self._writeArbdConf( prefix, numSteps, timestep, "%s/%s-" % (d,prefix) ) def _writeArbdCoordFile(self, filename): with open(filename,'w') as fh: for n,hid,zid in self.particles: fh.write("%f %f %f\n" % tuple(x for x in n.position)) def _writeArbdConf(self, prefix, numSteps=100000000, timestep=100e-6, potentialPrefix='' ): ## TODO: raise exception if _writeArbdPotentialFiles has not been called filename = "%s.bd" % prefix with open(filename,'w') as fh: fh.write("""# seed 1234 timestep %f steps %d numberFluct 0 interparticleForce 1 fullLongRange 0 temperature 291 electricField 0.0 outputPeriod 1000 outputEnergyPeriod 1000 outputFormat dcd decompPeriod 100000 cutoff 40.0 pairlistDistance 80 """ % (timestep, numSteps)) for x in self.getParticleTypesAndCounts(): fh.write("\nparticle %s\nnum %d\n" % x) ## TODO: look up better values in dictionary for particle types fh.write("gridFile null.dx\ndiffusion 150\n") fh.write("\ninputCoordinates %s.coord.txt\n" % prefix ) if os.path.exists("test.0.restart"): fh.write("restartCoordinates test.0.restart\n" ) fh.write("""\n## Interaction potentials tabulatedPotential 1 ## The i@j@file syntax means particle type i will have NB interactions with particle type j using the potential in file """) for pair,f in zip(self._particleTypePairIter(), self._nbParamFiles): i,j,t1,t2 = pair fh.write("tabulatedFile %d@%d@%s\n" % (i,j,f)) fh.write("\n") for f in list(set([b[-1].filename(potentialPrefix) for b in self.bonds])): fh.write("tabulatedBondFile %s\n" % f) fh.write("\n") for f in list(set([b[-1].filename(potentialPrefix) for b in self.angles])): fh.write("tabulatedAngleFile %s\n" % f) fh.write("\n") for f in list(set([b[-1].filename(potentialPrefix) for b in self.dihedrals])): fh.write("tabulatedDihedralFile %s\n" % f) fh.write("""\n## Files that specify connectivity of particles inputBonds {prefix}.bonds.txt inputAngles {prefix}.angles.txt inputDihedrals {prefix}.dihedrals.txt inputExcludes {prefix}.excludes.txt """.format( prefix=prefix )) with open("null.dx",'w') as fh: fh.write("""object 1 class gridpositions counts 2 2 2 origin -4000.00000 -4000.00000 -4000.00000 delta 8000.00000 0.000000 0.000000 delta 0.000000 8000.00000 0.000000 delta 0.000000 0.000000 8000.00000 object 2 class gridconnections counts 2 2 2 object 3 class array type float rank 0 items 8 data follows 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 attribute "dep" string "positions" object "density" class field component "positions" value 1 component "connections" value 2 component "data" value 3 """) def getParticleTypesAndCounts(self): return sorted( self.particleTypeCounts.items(), key=lambda x: x[0] ) def _particleTypePairIter(self): typesAndCounts = self.getParticleTypesAndCounts() for i in range(len(typesAndCounts)): t1 = typesAndCounts[i][0] for j in range(i,len(typesAndCounts)): t2 = typesAndCounts[j][0] yield( (i,j,t1,t2) ) def _writeArbdPotentialFiles(self, prefix, directory = "potentials"): ## TODO: remove reduncant directory calls try: os.makedirs(directory) except OSError: if not os.path.isdir(directory): raise pathPrefix = "%s/%s-" % (directory,prefix) self._writeNonbondedParameterFiles( pathPrefix + "nb" ) self._writeBondParameterFiles( pathPrefix ) self._writeAngleParameterFiles( pathPrefix ) self._writeDihedralParameterFiles( pathPrefix ) def _writeHarmonicPotentialFile(self, filename, k, x0, resolution=0.1, xmin=0, xmax=35, maxForce=None, periodicity=None): x = np.arange( xmin, xmax+resolution*2, resolution ) if periodicity is None: dx = x-x0 else: dx = np.mod( x-x0 + 0.5*periodicity, periodicity) - 0.5*periodicity u = 0.5*k*dx**2 if maxForce is not None: assert(maxForce > 0) f = np.diff(u)/np.diff(x) f[f>maxForce] = maxForce f[f<-maxForce] = -maxForce u[0] = 0 u[1:] = np.cumsum(f*np.diff(x)) np.savetxt( filename, np.array([x, u]).T, fmt="%f" ) def _writeNonbondedParameterFiles(self, prefix): x = np.arange(0, 50, 0.1) for i,j,t1,t2 in self._particleTypePairIter(): f = "%s.%s-%s.dat" % (prefix, t1, t2) if t1 == "O" or t2 == "O": y = np.zeros(np.shape(x)) else: bps1,bps2 = [float( t[1:] )/10 for t in (t1,t2)] y = nbPot.nbPot(x, bps1, bps2) np.savetxt( f, np.array([x, y]).T ) self._nbParamFiles.append(f) def _writeBondParameterFiles(self, prefix): for pot in list(set([item[-1] for item in self.bonds])): pot.write_file(prefix) def _writeAngleParameterFiles(self, prefix): for pot in list(set([item[-1] for item in self.angles])): pot.write_file(prefix) def _writeDihedralParameterFiles(self, prefix): for pot in list(set([item[-1] for item in self.dihedrals])): pot.write_file(prefix) def addBond(self, *args): self.bonds.add(args) def addAngle(self, *args): self.angles.add(args) def addDihedral(self, *args): self.dihedrals.add(args) def _buildBonds(self, prefix, directory="potentials"): self.bonds = set() ## Get intrahelical bonds for nodes,seps in self._getIntrahelicalBonds(): n1,n2 = nodes sep, = seps if n1.type[0] == "d" and n2.type[0] == "d": k = 10.0/sqrt(sep) # TODO: determine from simulations d = 3.4*sep else: ## TODO: get correct numbers from ssDNA model k = 1.0/sqrt(sep) d = 5*sep self.addBond(n1, n2, Bond(k, d)) ## Get crossover bonds for nodes,fwds in self._getCrossoverBonds(): n1,n2 = nodes self.addBond(n1, n2, Bond(4, 18.5)) ## Get crossover bonds for nodes,fwds in self._getSsCrossoverBonds(): n1,n2 = nodes self.addBond(n1, n2, Bond(1, 5)) ## Get crossover bonds for nodes,seps in self._getOrientationBonds(): n1,n2 = nodes self.addBond(n1, n2, Bond(30, 1)) # TODO: improve params def _buildAngles(self, prefix, directory="potentials"): kT = 0.58622522 # kcal/mol for nodes,seps in self._getIntrahelicalAngles(): n1,n2,n3 = nodes sep1,sep2 = seps sep = sep1+sep2 if n1.type[0] == "d" and n2.type[0] == "d" and n3.type[0] == "d": ## <cos(q)> = exp(-s/Lp) = integrate( x^4 exp(-A x^2) / 2, {x, 0, pi} ) / integrate( x^2 exp(-A x^2), {x, 0, pi} ) ## <cos(q)> ~ 1 - 3/4A ## where A = k_spring / (2 kT) k = 1.5 * kT * (1.0 / (1-exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 # k *= 5 else: ## TODO: get correct number from ssDNA model k = 1.5 * kT * (1.0 / (1-exp(-float(sep)/3))) * 0.00030461742; # kcal_mol/degree^2 ## Intrahelical 180 deg orientation angles if None not in [n.orientationNode for n in nodes]: k *= 0.5 # halve spring constant because using 2 springs args = [n.orientationNode for n in nodes] args.append( Angle(k,180) ) self.addAngle( *args ) self.addAngle( n1,n2,n3,Angle(k,180) ) a,d = self._getCrossoverAnglesAndDihedrals() for nodes,sep in a: n1,n2,n3 = nodes k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 self.addAngle( n1,n2,n3,Angle(k,90) ) ## Intrahelical 90 deg orientation angles for nodes,seps in self._getOrientationAngles(): n1,n2,n3 = nodes sep = np.sum(seps) k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(sep)/147))) * 0.00030461742; # kcal_mol/degree^2 self.addAngle( n1,n2,n3,Angle(k,90) ) ## Crossover orientation angles for nodes,fwds in self._getCrossoverBonds(): n1,n2 = nodes f1,f2 = fwds o1,o2 = [n.orientationNode for n in nodes] k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(1)/147))) * 0.00030461742; # kcal_mol/degree^2 if o1 is not None: t0 = 90 + 60 if f1: t0 -= 120 self.addAngle( o1,n1,n2,Angle(k,t0) ) if o2 is not None: t0 = 90 + 60 if f2: t0 -= 120 self.addAngle( n1,n2,o2,Angle(k,t0) ) def _buildDihedrals(self, prefix, directory="potentials"): kT = 0.58622522 # kcal/mol a,d = self._getCrossoverAnglesAndDihedrals() for nodes,sep,isFwd1,isFwd2 in d: n1,n2,n3,n4 = nodes ## <cos(q)> = exp(-s/Lp) = integrate( cos[x] exp(-A x^2), {x, 0, pi} ) / integrate( exp(-A x^2), {x, 0, pi} ) ## Assume A is small ## int[B_] := Normal[Integrate[ Series[Cos[x] Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]/ ## Integrate[Series[Exp[-B x^2], {B, 0, 1}], {x, 0, \[Pi]}]] ## Actually, without assumptions I get fitFun below ## From http://www.annualreviews.org/doi/pdf/10.1146/annurev.bb.17.060188.001405 ## units "3e-19 erg cm/ 295 k K" "nm" =~ 73 Lp = self.twistPersistenceLength/0.34 # set semi-arbitrarily as there is a large spread in literature fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - exp(-sep/Lp) k = opt.leastsq( fitFun, x0=exp(-sep/Lp) ) k = k[0][0] * 2*kT*0.00030461742 # intrinsicDegrees=30 # fitFun = lambda x: (1.0/(2*x) - 2*np.sqrt(np.pi)*np.exp(-4*np.pi**2*x) / (np.sqrt(x)*erf(2*np.pi*np.sqrt(x))) ) - \ # ( (intrinsicDegrees*np.pi/180)**2 + 2*(1-exp(-sep/Lp)) ) # k = opt.leastsq( fitFun, x0=1/(1-exp(-sep/Lp)) ) # k = k[0][0] * 2*kT*0.00030461742 t0 = sep*(360.0/10.5) # pdb.set_trace() if isFwd1[0]: t0 -= 120 if isFwd2[0]: t0 += 120 t0 = t0 % 360 # if n2.idx == 0: # print( n1.idx,n2.idx,n3.idx,n4.idx,k,t0,sep ) self.addDihedral( n1,n2,n3,n4,Dihedral(k,t0) ) for nodes,seps in self._getOrientationDihedrals(): n1,n2,n3,n4 = nodes sep = seps[1] t0 = sep*(360.0/10.5) Lp = self.twistPersistenceLength/0.34 # set semi-arbitrarily as there is a large spread in literature fitFun = lambda x: np.real(erf( (4*np.pi*x + 1j)/(2*np.sqrt(x)) )) * np.exp(-1/(4*x)) / erf(2*np.sqrt(x)*np.pi) - exp(-sep/Lp) k = opt.leastsq( fitFun, x0=exp(-sep/Lp) ) k = k[0][0] * 2*kT*0.00030461742 # k *= 0.1 # k *= 0 self.addDihedral( n1,n2,n3,n4,Dihedral(k,t0,maxPotential=1) ) ## Crossover dihedral angles for nodes,fwds in self._getCrossoverBonds(): n1,n2 = nodes f1,f2 = fwds o1,o2 = [n.orientationNode for n in nodes] a1,a2 = [n.nodeAbove for n in nodes] b1,b2 = [n.nodeBelow for n in nodes] k = (1.0/2) * 1.5 * kT * (1.0 / (1-exp(-float(1)/147))) * 0.00030461742; # kcal_mol/degree^2 if o1 is not None: t0 = 90 # if f1: t0 = -90 if a2 is not None: self.addDihedral( o1,n1,n2,a2,Dihedral(k,t0) ) if o2 is not None: t0 = 90 # if f2: t0 = -90 if a1 is not None: self.addDihedral( o2,n2,n1,a1,Dihedral(k,t0) ) if o1 is not None and o2 is not None: if a1 is not None and a2 is not None: t0 = 0 self.addDihedral( a1,n1,n2,a2,Dihedral(k,t0) ) elif b1 is not None and b2 is not None: t0 = 0 self.addDihedral( b1,n1,n2,b2,Dihedral(k,t0) ) elif b1 is not None and a2 is not None: t0 = 180 self.addDihedral( b1,n1,n2,a2,Dihedral(k,t0) ) elif a1 is not None and b2 is not None: t0 = 180 self.addDihedral( a1,n1,n2,b2,Dihedral(k,t0) ) def _writeArbdBondFile(self, prefix, directory="potentials"): filename = prefix + ".bonds.txt" prefix = "%s/%s-" % (directory,prefix) with open(filename,'w') as fh: for n1,n2,pot in self.bonds: fh.write("BOND ADD %d %d %s\n" % (n1.idx, n2.idx, pot.filename(prefix))) def _writeArbdAngleFile(self, prefix, directory="potentials"): filename = prefix + ".angles.txt" prefix = "%s/%s-" % (directory,prefix) with open(filename,'w') as fh: for n1,n2,n3,pot in self.angles: fh.write("ANGLE %d %d %d %s\n" % (n1.idx, n2.idx, n3.idx, pot.filename(prefix))) def _writeArbdDihedralFile(self, prefix, directory="potentials"): filename = prefix + ".dihedrals.txt" prefix = "%s/%s-" % (directory,prefix) with open(filename,'w') as fh: for n1,n2,n3,n4,pot in self.dihedrals: fh.write("DIHEDRAL %d %d %d %d %s\n" % (n1.idx, n2.idx, n3.idx, n4.idx, pot.filename(prefix))) def _writeArbdExclFile(self, filename): ## Exclude all 1-4 intrahelical nodes # e = 4 e = 8 exclusions = { (nodes[i],nodes[j]) for nodes,seps in self._getIntrahelicalNodeSeries(e) for i in range(e-1) for j in range(i,e) } ## TODO, make exclusions depend on distance ## Exclude ssDNA contacts for nodes,seps in self._getSsCrossoverBonds(): n1,n2 = nodes # recall that nodes is sorted by .idx exclusions.add( nodes ) exclusions.update( [(n1,n) for n in (n2.nodeBelow,n2.nodeAbove) if n is not None] ) exclusions.update( [(n,n2) for n in (n1.nodeBelow,n1.nodeAbove) if n is not None] ) ## Exclude crossovers and nearby for nodes,fwds in self._getCrossoverBonds(): n1,n2 = nodes # recall that nodes is sorted by .idx exclusions.add( nodes ) exclusions.update( [(n1,n) for n in (n2.nodeBelow,n2.nodeAbove) if n is not None] ) exclusions.update( [(n,n2) for n in (n1.nodeBelow,n1.nodeAbove) if n is not None] ) ## Write exclusions with open(filename,'w') as fh: for n1,n2 in exclusions: fh.write( "EXCLUDE %d %d\n" % (n1.idx,n2.idx) ) def _getNonbondedPotential(self,x,a,b): return a*(np.exp(-x/b))